

MATHEMATIQUES

Programme de Colle semaine $n^{\circ}2$ du 16 Septembre 2024

- Une colle sera du type d'un oral de CCINP, à savoir deux exercices :
 - Le premier exercice doit contenir :
 - Une question de cours (un énoncé d'une définition, d'une propriété ou d'un théorème) ou une démonstration qui sera **signalée en gras** dans le programme de colle.
 - Deux niveaux de démonstration : niveau (*) pour les volontaires.
 - Une application très directe du cours :
 - Un deuxième exercice portant sur une notion du programme de colle différente du premier exercice.
- Comment préparer une colle? Il est indispensable de connaître son cours, savoir refaire les exemples traités en cours et les exercices mentionnés dans le programme de colle.
- Notation : Dès lors qu'il s'avère que le cours n'est pas su, la note sera obligatoirement inférieure à 8. Ensuite, les points seront rajoutés suivant votre autonomie face aux exercices.
- Après la colle : Avant le vendredi de la semaine suivant votre colle, vous devez me rendre votre cahier de colle où vous rédigerez au moins un des deux exercices

1 Compléments d'algèbre linéaire

1.1 Formes linéaires et hyperplans

- 1. Savoirs attendus:
 - (a) Montrer qu'une application est une forme linéaire sur E.
 - (b) Les méthodes pour montrer qu'un sev H est un hyperplan de E:
 - i. H admet une droite comme supplémentaire.
 - ii. H est le noyau d'une forme linéaire non nulle de E.
 - iii. $\dim H = \dim E 1$.
 - (c) Savoir construire un supplémentaire de $H:D=\mathrm{Vect}\,(a)$ où $a\notin H$.
 - (d) Savoir déterminer une équation linéaire de H dans une base de E.
- 2. Démos à connaître : **Niveau** (*)
 - (a) Savoir montrer que si H est le noyau d'une forme linéaire non nulle sur E, alors H est un hyperplan
 - (b) Savoir montrer que si $a \notin H$ et H est un hyperplan de E, alors $\mathbf{H} \oplus \operatorname{Vect}(\mathbf{a}) = \mathbf{E}$

1.2 Produit d'espaces vectoriels

Savoirs attendus:

- 1. Définition
- 2. Cas où les e.v sont de dimension finie.
- 3. Construire une base de $E_1 \times E_2$ à l'aide d'une base de E_1 et d'une base de E_2 .

1.3 Matrices par blocs

Savoirs attendus:

- 1. La notation usuelle d'une matrice par blocs : on sait reconnaître dans un énoncé une matrice par blocs.
- 2. Produit de matrices par blocs.
- 3. Déterminant d'une matrice triangulaire par blocs.

1.4 Matrices semblables

Savoirs attendus:

- 1. Définition
- 2. Caractérisation à l'aide d'un endomorphisme : La méthode pratique pour montrer que deux matrices sont semblables : Je considère l'une comme la matrice dans la base canonique de \mathbb{K}^n d'un endo f et je montre que l'autre est la matrice de ce même endo dans une base différente que je cherche.
- 3. Démo à connaître : Deux matrices semblables ont même rang, même déterminant mais réciproque fausse

1.5 Sous espace stable par un endomorphisme

Savoirs attendus:

- 1. Définition d'un sev stable par $u \in \mathcal{L}(E)$ et de l'endomorphisme de F induit par u.
- 2. La méthode de rédaction pour montrer qu'un sev est stable par $u \in \mathcal{L}(E)$.
- 3. Démo à connaître : Si f et g sont deux endomorphismes qui commutent, alors
 - (a) $\forall \lambda \in \mathbb{K}, \ker(f \lambda Id) \text{ (resp : } \ker(g \lambda Id)\text{) est stable par } g \text{ (resp : par } f)$
- (b) Démo à connaître : Le noyau et L'image de l'un sont stables par l'autre.

2 Exercices qui peuvent être redonner

Exercice 1. Soit f la forme linéaire de \mathbb{R}^3 définie par f(1,1,1) = 0, f(2,0,1) = 1, f(1,2,3) = 4. Justifier que Ker (f) est un hyperplan dont on donnera un supplémentaire, une base et une équation linéaire dans la base canonique de \mathbb{R}^3 .

Exercice 2. Soit f une forme linéaire sur E, espace vectoriel de dimension n et $a \in E$ tel que $f(a) \neq 0$.

- 1. Montrer que $E = \text{Ker}(f) \oplus \text{Vect}(a)$.
- 2. On suppose f(a) = 1. Montrer que p tel que $\forall x \in E, p(x) = f(x)a$ est un projecteur de E et donner les sous espaces F et G tel que p soit le projecteur sur F parallèlement à G.

Exercice 3. Quelle est la dimension de $\mathbb{R}_2[X] \times \mathbb{R}_1[X]$? Donner une base de cet espace.

Exercice 4. On se donne $(P,Q) \in \mathbb{C}_2[X]^2$. On pose $\Phi(U,V) = PU + VQ$:

- 1. Montrer que Φ est linéaire de $\mathbb{C}_1[X]^2$ vers $\mathbb{C}_3[X]$
- 2. Exprimer sa matrice dans des bases à déterminer.
- 3. Donner une condition sur les coefficients de P et Q pour qu'ils n'aient aucune racine commune.

Exercice 5. Soient
$$n \in \mathbb{N}^*$$
, $A, B, C \in \mathcal{M}_n(\mathbb{K})$, $I = I_n, M = \begin{pmatrix} I & A & C \\ 0 & I & B \\ 0 & 0 & I \end{pmatrix}$.

Montrer que M est inversible et calculer M^{-1} .

Exercice 6. On donne A et B dans $\mathcal{M}_n(\mathbb{C})$ et

$$M = \left(\begin{array}{cc} A & A \\ A & B \end{array}\right) \in \mathcal{M}_{2n}(\mathbb{C})$$

2

- 1. Calculer le rang de M en fonction de A et B.
- 2. Calculer M^{-1} quand elle existe.

Exercice 7. Soit
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}) \text{ et } B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$$

Calculer A^2 et B^2 .

A et B sont-elles semblables?

Exercice 8. Soit M une matrice non nulle de $\mathcal{M}_3(\mathbb{R})$ telle que $M^2 = 0$. Calculer les dimensions de Im M et Ker M. Montrer que M est semblable à $E_{1,3}$.