

#### Devoir Libre Obligatoire $n^{\circ}2$ à rendre le mardi 24 Septembre 2024 Niveau E3A/CCINP

## Exercice I

Soit  $n \in \mathbb{N}$ .

On note  $\mathbb{R}_n[X]$  l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n, et  $B = \{1, X, X^2, ..., X^n\}$  sa base canonique.

Etant donnée une famille de (n+1) réels distincts  $a_0 < a_1 < a_2 < \ldots < a_n$ , on lui associe

les polynômes  $L_0, L_1, L_2...L_n$  de  $\mathbb{R}_n[X]$  tels que :

$$\forall i \in \{0, 1, 2, ...n\}, \forall j \in \{0, 1, 2, ...n\} \setminus \{i\}, \ L_i(a_j) = 0 \text{ et } L_i(a_i) = 1$$

On note enfin A la matrice carrée dont les vecteurs colonnes sont les coordonnées dans la base B des vecteurs  $L_0, L_1, L_2, ... L_n$ .

- 1. On prend n = 2,  $a_0 = 0$ ,  $a_1 = 1$ ,  $a_2 = 2$ .
  - (a) Donner  $L_0, L_1, L_2$

Montrer que  $\{L_0, L_1, L_2\}$  est une base de  $\mathcal{R}_2[X]$ .

Montrer que, pour polynôme P de  $\mathbb{R}_2[X]$ , on a  $P = P(0)L_0 + P(1)L_1 + P(2)L_2$ .

- (b) Former la matrice de changement de base de  $B = \{1, X, X^2\}$  à  $B' = \{L_0, L_1, L_2\}$ . Justifier que A est cette matrice
- (c) Le but de cette question est de déterminer les polynômes P de  $\mathbb{R}_2[X]$  tels que :

$$P(X) = P(0) + P(1)X + P(2)X^{2}$$

Soit P un tel polynôme.

- i. Donner la matrice colonne T donnant les coordonnées de P dans B.
- ii. Donner la matrice colonne T' donnant les coordonnées de P dans B'.
- iii. Chercher dans votre cours de PCSI la relation matricielle qui existe entre T, T' et A.
- iv. En déduire l'ensemble des solutions S des polynômes P de  $\mathbb{R}_2[X]$  vérifiant  $P(X) = P(0) + P(1)X + P(2)X^2$ .
- v. Montrer que S est un sev de  $\mathbb{R}_2[X]$  de dimension finie. En déterminer une base.
- 2. Retour au cas général
  - (a) Montrer que  $B' = \{L_0, L_1, L_2..L_n\}$  est une base de  $\mathbb{R}_n[X]$ . Indiquer les coordonnées dans la base B' d'un polynôme P quelconque de  $\mathbb{R}_n[X]$ .
  - (b) Quel est le nombre de lignes et de colonnes de A?
    - Montrer que A est inversible.
    - Calculer son inverse. Comment s'appelle cette matrice? Donner son déterminant.
  - (c) Montrer que  $\sum_{i=0}^{n} L_i = 1$ .

En déduire que la somme des éléments de la première ligne de A est égale à 1, et que la somme des éléments de toute autre ligne de A est nulle.

#### Exercice II

Soit  $n \in \mathbb{N}^*$ . Soit  $(E_{ij})_{1 \leq i,j \leq n}$  la base des matrices élémentaires de  $\mathcal{M}_n(\mathbb{K})$ . [1,n] désigne l'intervalle des entiers naturels compris entre 1 et n.

- 1. Soit  $A \in \mathcal{M}_n(\mathbb{K})$ . Calculer  $AE_{ij}$  et  $E_{i,j}A$  pour  $(i,j) \in [1,n]^2$ .
- 2. En déduire  $E_{ij}E_{kl}$  pour  $(i, j, k, l) \in [1, n]^4$ .

- 3. Soit  $f: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$  linéaire vérifiant :  $\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2, f(AB) = f(BA)$ .
  - (a) Montrer que l'application trace vérifie cette condition. Savoir refaire la démonstration rigoureuse du cours sans regarder le cours!!

Soit  $f: \mathcal{M}_n(\mathbb{K}) \longmapsto \mathbb{K}$  linéaire vérifiant la condition de l'énoncé.

- (b) Montrer que :  $\forall i \in [1, n], f(E_{ii}) = f(E_{11}).$
- (c) Montrer que :  $\forall (i,j) \in [1,n]^2, i \neq j \Longrightarrow f(E_{ij}) = 0.$
- (d) En déduire que f est colinéaire à la trace. (c-a-d qu'il existe  $\lambda \in \mathbb{K}, \forall A \in \mathscr{M}_n(\mathbb{K}), f(A) = \lambda tr(A)$ ).

## Devoir Libre Obligatoire n°2 MATHEMATIQUES Algèbre PSI Corrigé

## Exercice I

- 1. On prend n = 2,  $a_0 = 0$ ,  $a_1 = 1$ ,  $a_2 = 2$ .
  - (a) D'après la construction des polynômes  $L_0, L_1, L_2$ , nous pouvons dire que 1 et 2 sont racines de  $L_0$ . Ainsi  $L_0$  est divisible par (X-1)(X-2). Etant de degré inférieur ou égal à 2, on peut écrire : il existe  $\lambda \in \mathbb{R}, L_0(X) = \lambda(X-1)(X-2)$ .  $L_0(0) = 1 \Longrightarrow 1 = 2\lambda$ . D'où,  $L_0(X) = \frac{1}{2}(X-1)(X-2)$ .

De manière analogue, on a 0 et 2 sont racines de  $L_1$ . Ainsi  $L_1$  est divisible par X(X-2). Etant de degré inférieur ou égal à 2, on peut écrire : il existe  $\lambda \in \mathbb{R}$ ,  $L_1(X) = \lambda X(X-2)$ .  $L_1(1) = 1 \Longrightarrow 1 = -\lambda$ . D'où,  $L_1(X) = -X(X-2)$ .

Puis, 0 et 1 sont racines de  $L_2$ . Ainsi  $L_2$  est divisible par X(X-1). Etant de degré inférieur ou égal à 2, on peut écrire : il existe  $\lambda \in \mathbb{R}$ ,  $L_2(X) = \lambda X(X-1)$ .  $L_2(2) = 1 \Longrightarrow 1 = 2\lambda$ . D'où,  $L_2(X) = \frac{1}{2}X(X-1)$ .

—  $\dim \mathbb{R}_2[X]=3$  donc  $(L_0,L_1,L_2)$  est une famille maximale. Elle est libre car :

Soit  $(a, b, c) \in \mathbb{R}^3$ ,  $aL_0 + bL_1 + cL_2 = 0$ .

Ceci revient à écrire :  $\forall x \in \mathbb{R}, aL_0(x) + bL_1(x) + cL_2(x) = 0.$ 

En particuler pour x = 0, ce qui impose que a = 0.En particuler pour x = 1, ce qui impose que b = 0. En particuler pour x = 2, ce qui impose que c = 0.  $(L_0, L_1, L_2)$  est ainsi une famille libre et maximale de  $\mathbb{R}_2[X]$ .

- Soit  $P \in \mathbb{R}_2[X]$ . P se décompose dans la base précédente. Ainsi il existe  $(a, b, c) \in \mathbb{R}^3$ ,  $aL_0 + bL_1 + cL_2 = P$ , c'est-à-dire :  $\forall x \in \mathbb{R}$ ,  $P(x) = aL_0(x) + bL_1(x) + cL_2(x)$ . En particuler pour x = 0, ce qui impose que a = P(0). En particuler pour x = 2, ce qui impose que c = P(2). cqfd.
- (b) Pour construire la matrice de passage de  $B=(1,X,X^2)$  à  $B'=(L_0,L_1,L_2)$ , on écrit en colonne les coordonnées des vecteurs de  $(L_0,L_1,L_2)$  dans la base B. C'est exactement la définition de A.  $L_0(X)=\frac{1}{2}X^2-\frac{3}{2}X+1, L_1(X)=-X^2+2X, L_2(X)=\frac{1}{2}X^2-\frac{1}{2}X.$  Ainsi,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix}$$

- (c) i. D'après la définition de P, on a  $T = \begin{pmatrix} P(0) \\ P(1) \\ P(2) \end{pmatrix}$ .
  - ii. Par 1.(a),  $T' = \begin{pmatrix} P(0) \\ P(1) \\ P(2) \end{pmatrix}$ .
  - iii. Par le cours, T = AT'
  - iv. Posons  $T = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ . Trouver P de  $\mathbb{R}_2[X]$  vérifiant  $P(X) = P(0) + P(1)X + P(2)X^2$  revient à trouver

$$(x, y, z)$$
 tels que  $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ .

On est ramené à résoudre le système :

$$\begin{cases} x = x \\ y = -\frac{3}{2}x + 2y - \frac{1}{2}z \\ z = \frac{1}{2}x - y + \frac{1}{2}z \end{cases}$$

$$\begin{cases} 3x - 2y + z = 0 \\ x - 2y - z = 0 \end{cases}$$

$$\begin{cases} x - 2y - z = 0 \\ -2x - 2z = 0 \end{cases}$$

$$\begin{cases} z = -x \\ y = x \end{cases}$$

Ainsi les solutions cherchées sont  $P = x(1 + X - X^2)$ . C'est à dire que  $S = vect(1 + X + X^2)$ .

v.  $S = vect(1 + X + X^2)$  donc S est un sev de  $\mathbb{R}_2[X]$  de dimension 1 et  $(1 + X + X^2)$  en est une base.

2. (a) — dim  $\mathbb{R}_n[X] = n + 1$  et  $\{L_0, L_1, L_2...L_n\}$  a n + 1 éléments donc la famille est maximale. Montrons qu'elle est libre :

Soit  $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}, \lambda_0 L_0 + \dots + \lambda_n L_n = 0.$ 

Ce qui revient à écrire :  $\forall x \in \mathbb{R}, \lambda_0 L_0(x) + \dots + \lambda_i L_i(x) + \dots + \lambda_n L_n(x) = 0.$ 

Soit  $i \in \{0, \dots, n\}$ . Appliquons la relation précédente à  $x = a_i$ . Par la définition des  $(L_j)_j$ , nous arrivons à :  $\lambda_i = 0$ .

Conclusion :  $\{L_0, L_1, L_2...L_n\}$  est une famille maximale et libre de  $\mathbb{R}_n[X]$ , donc une base.

— Soit  $P \in \mathbb{R}_n[X]$ . P se décompose sur la base B' de la manière suivante :  $P = \lambda_0 L_0 + \cdots + \lambda_n L_n$  où  $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ . Ce qui revient à écrire :  $\forall x \in \mathbb{R}, P(x) = \lambda_0 L_0(x) + \cdots + \lambda_i L_i(x) + \cdots + \lambda_n L_n(x)$ . Soit  $i \in \{0, \dots, n\}$ . Appliquons la relation précédente à  $x = a_i$ . Par la définition des  $(L_j)_j$ , nous arrivons à :  $P(a_i) = \lambda_i$ .

Conclusion : Les coordonnées de P dans la base B' sont  $(P(a_0), \dots, P(a_n))$ .

- (b) A est une matrice à n+1 lignes et colonnes car dim  $\mathbb{R}_n[X] = n+1$ .
  - A est une matrice de passage donc ses colonnes traduisent des vecteurs d'une base donc des vecteurs indépendants, c'est-à-dire que A a toutes ses colonnes indépendantes. Donc A est inversible.
    - $A^{-1}$  est la matrice de passage de B' vers B.

Il nous faut écrire en colonnes les coordonnées de  $X^j, j \in \{0, \dots, n\}$  dans B'. Par 2 (a), on peut écrire  $X^j = a_0^j L_0 + \dots + a_j^j L_i + \dots + a_n^j L_n$ . Donc,

$$A^{-1} = \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^n \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix}$$

On retrouve la matrice de Vandermonde associée à la famille  $(a_0, a_1, \dots, a_n)$ . Par le cours, son déterminant est alors :

$$\prod_{0 \le i < j \le n} \left( a_j - a_i \right)$$

- (c) Le polynôme P=1 se décompose sur la base  $(L_i)_{0 \le i \le n}$  et ses coordonnées dans cette base sont : $(P(a_i)_{0 \le i \le n})$ . Or pour tout i,  $P(a_i) = 1$  ce qui donne la combinaison linéaire  $1 = \sum_{i=0}^{n} L_i$ .
  - Traduisons  $1 = \sum_{i=0}^{n} L_i$  dans la base canonique de  $\mathbb{R}_n[X]$ . Notons  $A = (a_{i,j})_{1 \leq i,j \leq n+1}$ .

Les coordonnées de 1 dans la base canonique de  $\mathbb{R}_n[X]$  sont :  $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ .

Les coordonnées de  $L_i$  dans la base canonique correspondent à la  $(i+1)^{\hat{i}\hat{e}me}$  colonne de A par définition de A. Ainsi, nous obtenons

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \sum_{i=1}^{n+1} \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{n+1i} \end{pmatrix}$$

Ce qui nous donne  $1 = \sum_{i=1}^{n+1} a_{1i}$ . C'est-à-dire que la somme des éléments de la première ligne de A est égale à 1.

Et  $\forall k \in \{2..n+1\}, 0 = \sum_{i=1}^{n+1} a_{ki}$ . C'est-à-dire que la somme des éléments des autres lignes de A est nulle.

Remarque : on peut le vérifier au 1.(b)

# Exercice II

Soit  $n \in \mathbb{N}^*$ . Soit  $(E_{ij})_{1 \leq i,j \leq n}$  la base des matrices élémentaires de  $\mathcal{M}_n(\mathbb{K})$ . [1,n] désigne l'intervalle des entiers naturels compris entre 1 et n.

- 1. Soit  $A \in \mathscr{M}_n(\mathbb{K})$ .
  - Toutes les colonnes de  $E_{ij}$  autres que la  $j^{\text{i\`eme}}$  sont nulles donc il en est de même pour celles de  $AE_{ij}$ . La  $j^{\text{i\`eme}}$  colonne de  $E_{ij}$  n'est autre que les coordonnées du  $i^{\text{i\`eme}}$  vecteur de la base canonique de  $\mathbb{R}^n$ . Alors A appliqué à ce vecteur nous donne la  $i^{\text{i\`eme}}$  colonne de A.

Conclusion :  $AE_{ij}$  est la matrice dont toutes les colonnes sont nulles sauf la  $j^{\text{i\`eme}}$  qui est la  $i^{\text{i\'eme}}$  colonne de A.

- Toutes les lignes de  $E_{ij}$  autres que la  $i^{\text{i\`eme}}$  sont nulles donc il en est de même pour celles de  $E_{ij}A$ . Si 1 est la  $j^{\text{i\`eme}}$  coordonnées de  $(0, \dots, 1, 0, \dots, 0)$ , alors  $(0, \dots, 1, 0, \dots, 0)A$  nous donne la  $j^{\text{i\`eme}}$  ligne de A. Conclusion :  $E_{ij}A$  est la matrice dont toutes les lignes sont nulles sauf la  $i^{\text{i\`eme}}$  qui est la  $j^{\text{i\`eme}}$  ligne de A.
- 2. En appliquant ce qui précède, on obtient  $E_{ij}E_{kl}$  est la matrice dont toutes les lignes sont nulles sauf la  $i^{\text{i\`eme}}$  qui est la  $j^{\text{i\`eme}}$  ligne de  $E_{kl}$ .

Par conséquent, si  $j \neq k$ ,  $E_{ij}E_{kl} = 0$  et si j = k,  $E_{ij}E_{jl}$  est la matrice dont toutes les lignes sont nulles sauf la  $i^{\text{l\`eme}}$  qui est la  $j^{\text{l\'eme}}$  ligne de  $E_{jl}$ , c'est-à-dire que des coeffs nuls sauf sur la  $l^{\text{l\'eme}}$  colonne qui vaut 1. On reconnaît  $E_{il}$ . Ainsi  $E_{ij}E_{jl} = E_{il}$ .

- 3. (a) Cf cours.
  - (b) Soit  $i \in [1, n]$ , on peut écrire par 2.  $E_{ii} = E_{i1}E_{1i}$ . Alors  $f(E_{ii}) = f(E_{i1}E_{1i}) = f(E_{1i}E_{i1})$  par la condition vérifiée par f. Puis,  $E_{1i}E_{i1} = E_{11}$  par 2. Conclusion :  $\forall i \in [1, n], f(E_{ii}) = f(E_{11})$ .
  - (c) Soit  $i \neq j$ . on peut écrire par 2.  $E_{ij} = E_{i1}E_{1j}$ . Alors  $f(E_{ij}) = f(E_{i1}E_{1j}) = f(E_{1j}E_{i1})$  par la condition vérifiée par f. Puis,  $E_{1j}E_{i1} = 0$  par 2 et car  $i \neq j$ . Alors  $f(E_{ij}) = f(0) = 0$  car f est linéaire.
  - (d) Soit  $A \in \mathcal{M}_n(\mathbb{K})$ . Décomposée dans la base des matrices élémentaires, on peut écrire :

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E_{ij}$$

où  $a_{ij}$  désignent les coefficients de A. Alors

$$f(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} f(E_{ij})$$

par linéarité de f.

$$f(A) = \sum_{i=1}^{n} a_{ii} f(E_{ii})$$

 $\operatorname{car} f(E_{ij}) = 0 \text{ pour } i \neq j.$ 

$$f(A) = f(E_{11}) \sum_{i=1}^{n} a_{ii}$$

car  $\forall i \in [1, n], f(E_{ii}) = f(E_{11})$  et  $f(E_{11})$  est indépendant de l'indice i. f est à valeurs dans  $\mathbb{K}$  donc  $f(E_{11}) \in \mathbb{K}$ . Ce scalaire ne dépend pas de A. Posons  $\lambda = f(E_{11})$ . D'autre part,  $\sum_{i=1}^{n} a_{ii} \text{ n'est autre que tr}(A). \text{ D'où, il existe } \lambda \in \mathbb{K}, \forall A \in \mathcal{M}_n(\mathbb{K}), f(A) = \lambda tr(A).$