Devoir Libre n°8 PSI MATHEMATIQUES Sujet E3A/CCINP Pour le 4 Février 2025

1. Question de cours

Soit f une fonction continue sur \mathbb{R} , à valeurs réelles et T-périodique.

Montrer que :
$$\forall x \in \mathbb{R}, \int_{x}^{x+T} f(u) du = \int_{0}^{T} f(u) du$$
.

* * * * *

On se propose de déterminer des fonctions y de classe C^2 sur $\mathbb R$ et vérifiant, pour tout réel x, la relation :

$$xy''(x) + y'(x) - 4xy(x) = 0. (**)$$

- 2. On suppose qu'il existe une fonction g, développable en série entière, de rayon de convergence non nul, vérifiant (**), sous la forme $g: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ et telle que $: g(0) = a_0 = 1$.
 - (a) Prouver que $a_1 = 0$ et déterminer pour tout $n \ge 1$ une relation entre a_{n-1} et a_{n+1} .
 - (b) Déterminer alors a_n pour tout entier naturel n.
 - (c) Déterminer l'ensemble de définition de la fonction g ainsi obtenue.

Soit F la fonction définie sur \mathbb{R} par :

$$F: x \mapsto F(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp(2x \cos(t)) dt.$$

3. Quelques propriétés de la fonction F

(a) Étudier la parité de la fonction F.

On pourra utiliser le changement de variable $u = \pi - t$ et la question de cours.

(b) Pour tout couple (x,t) de $\mathbb{R} \times [0,2\pi]$, on pose $h(x,t) = \exp(2x\cos(t))$. On admet que F est de classe C^{∞} sur \mathbb{R} et

$$\forall k \in \mathbb{N}^*, \forall x \in \mathbb{R}, F^{(k)}(x) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial^k h}{\partial x^k}(x, t) dt$$

Montrer que F vérifie la relation (**).

4. Développement en série entière de F

- (a) Donner le développement en série entière au voisinage de zéro de la fonction exponentielle et son domaine de validité.
- (b) En utilisant la question précédente, montrer qu'il existe une suite $(I_n)_{n\in\mathbb{N}}$ de réels tels que :

$$\forall x \in \mathbb{R}, \quad F(x) = \sum_{n=0}^{+\infty} I_n x^n$$

où I_n s'exprime simplement à l'aide de l'intégrale $J_n = \int_0^{2\pi} (\cos(t))^n dt$.

On citera les théorèmes utilisés en s'assurant que toutes leurs hypothèses sont bien vérifiées.

- (c) Calculer J_0 et J_1 .
- (d) Soit $n \ge 2$. Déterminer une relation de récurrence entre J_n et J_{n-2} .
- (e) En déduire, pour tout entier naturel n, une expression de J_n en fonction de n.
- (f) Comparer alors les fonctions F et g.