

Devoir Libre n°9 PSI MATHEMATIQUES

Pour le 5 Mars 2025

Vous choisissez un niveau et vous faites les deux exercices associés.

1 Niveau CCINP/E3A

Exercice 1. :(extraît E3A 2022).

Soit F la fonction définie sur \mathbb{R} par :

$$F: x \mapsto F(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp(2x \cos(t)) dt.$$

Montrer que F est C^1 sur \mathbb{R}

Exercice 2. : On pose
$$f(x) = \int_0^{+\infty} \frac{te^{-tx}}{e^t - 1} dt$$
.

- 1. Donner l'ensemble de définition de f .
- 2. Montrer que f est continue sur son domaine de définition.
- 3. Calcular $\lim_{x \to +\infty} f(x)$.

Niveau Mines / Centrale

Exercice 3. Soit $f(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{1+t}} dt$.

- 1. Montrer que f est C^1 sur $]0, +\infty[$.
- 2. Déterminer la limite de f en $+\infty$ et en 0.
- 3. Donner un équivalent de f en 0.
- 4. Établir que f est solution d'une équation différentielle linéaire.

Exercice 4. (Mines-Ponts 2022)

1. Montrer que :

$$\int_0^1 \ln\left(\frac{1 - e^{-tu}}{t}\right) du \underset{t \to 0^+}{\longrightarrow} -1.$$

2. Soit la fonction q qui à tout réel x associe le nombre réel $q(x) = x - \lfloor x \rfloor - \frac{1}{2}$, où $\lfloor x \rfloor$ désigne la partie entière de x.

Pour $k \in \mathbf{N}^*$ et $t \in \mathbf{R}_+$, on pose :

$$u_k(t) = \int_{k/2}^{(k+1)/2} \frac{tq(u)}{e^{tu} - 1} du$$
 si $t > 0$, et : $u_k(t) = \int_{k/2}^{(k+1)/2} \frac{q(u)}{u} du$ si $t = 0$.

Montrer que u_k est continue sur \mathbf{R}_+ pour tout $k \in \mathbf{N}^*$.