

Devoir Surveillé n°1 PSI MATHEMATIQUES

Samedi 14 Septembre 2024 Durée : 2 heures

Niveau Mines/Centrale

(Documents, calculatrice et portables interdits)

Problème I

Notations et objectifs :

Soit n un	entier, $n \geqslant$	≥ 2 ; on 1	note E =	$=\mathfrak{M}_n(\mathbb{R})$	$le \mathbb{R}$	-espace	vectoriel	des	matrices	carrées	d'ordre	n à	coefficients
réels, et l	$E^* = \mathscr{L}(E$	\mathbb{R} le \mathbb{R}	espace	vectoriel	des f	formes li	inéaires s	ur E	₹.				

On rappelle que : $\dim(E) = \dim(E^*)$.

Les éléments de E sont notés $M = (m_{ij})$, la matrice élémentaire E_{ij} est la matrice de E dont les coefficients sont tous nuls à l'exception de celui qui se trouve sur la i-ème ligne et sur la j-ème colonne, qui vaut 1.

Lorsque A et B sont des éléments de E, on note A . B leur produit.

Si $M \in E$, on note Vect(M) le sous-espace vectoriel engendré par M

 \square L'objectif du problème est de montrer que chaque hyperplan vectoriel de E possède au moins une matrice inversible.

$$\square$$
 Si $M = (m_{ij}) \in E$, on note $T(M)$ le réel $\sum_{k=1}^{n} m_{kk}$.

On définit ainsi une application T de E vers $\mathbb{R}: M \mapsto T(M)$.

A chaque matrice U de E, on associe :

- L'application T_U de E vers $\mathbb{R}: M \mapsto T_U(M) = T(U.M)$.
- L'ensemble $H_U = \{ M \in E \mid T(U.M) = 0 \}.$

Partie I: Généralités, exemples.

- 1. Quelques propriétés.
 - (a) Montrer que T est une application linéaire.
 - (b) Pour $U \in E$, prouver que l'application T_U est dans E^* .
 - (c) Soit $U \in E$; reconnaître $\operatorname{Ker} T_U$, et montrer que H_U est un sous espace vectoriel de E.
- 2. Dans cette question seulement, on prend n = 2, et on pose $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
 - (a) Écrire les quatre matrices élémentaires E_{ij} ; que peut-on dire de la famille $(E_{11}, E_{12}, E_{21}, E_{22})$ de $E = \mathfrak{M}_2(\mathbb{R})$?
 - (b) Montrer que H_U est l'ensemble des matrices de E dont la somme des quatre coefficients vaut 0.
 - (c) Trouver une matrice M de E telle que $T(U . M) \neq 0$, et en déduire la dimension de $\operatorname{Im} T_U$ puis la dimension de H_U .
 - (d) Montrer que H_U possède une matrice inversible. La partie **III** propose une généralisation de ce résultat.

Partie II: Quelques résultats utiles pour la suite

- 1. Soit $A = (a_{ij})$ et $B = (b_{ij})$ des éléments de E.
 - (a) Montrer que $T(A.B) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji}$.
 - (b) En déduire les identités suivantes :

(I₁)
$$T({}^{t}A.B) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}$$

(I₂) $T(B.A) = T(A.B)$

- 2. Soit U dans E.
 - (a) Si U est la matrice nulle, déterminer dim H_U .
 - (b) Si U n'est pas la matrice nulle, montrer que l'on peut trouver un couple d'entiers (i_0, j_0) tel que : $T_U(E_{i_0j_0}) \neq 0$. En déduire que H_U est un hyperplan et donner sa dimension .
- 3. Pour $(i,j) \in \left\{1,2,...,n\right\}^2,$ on note $T_{i\,j} = T_{E_{j\,i}}.$
 - (a) Les indices k et l étant fixés, calculer $T_{ij}(E_{kl})$ en utilisant (I_1) .
 - (b) En déduire que les n^2 éléments T_{ij} de E^* permettent de définir une base de E^* .
- 4. Montrer que l'application φ de E vers $E^*: U \mapsto \varphi(U) = T_U$ est un isomorphisme d'espaces vectoriels.
- 5. On considère un hyperplan vectoriel H de E.
 - (a) Quelle est sa dimension?
 - (b) Soit A une matrice non nulle de E qui n'appartient pas à H, montrer que : $E = H \oplus \text{Vect}(A)$.
 - (c) Construire alors un élément l de E^* tel que $H = \operatorname{Ker} l$.
 - (d) Prouver l'existence d'un élément U de E tel que $H=H_U$.

Partie III: Le résultat général

Pour $1 \leqslant r \leqslant n$, on note $R_r = \sum_{i=1}^r E_{ii}$.

1. Soit
$$P = \begin{pmatrix} 0 & 0 & . & 0 & 1 \\ 1 & . & . & . & 0 \\ . & . & . & . & . \\ 0 & . & . & . & 0 \\ 0 & 0 & . & 1 & 0 \end{pmatrix}$$
 c'est-à-dire $P = (p_{ij})$ avec

$$\begin{cases} p_{i+1 i} = 1 & 1 \leqslant i \leqslant n-1 \\ p_{1 n} = 1 \\ p_{i j} = 0 & \text{ailleurs} \end{cases}$$

- (a) Montrer que P est inversible.
- (b) Prouver que P appartient à l'hyperplan H_{R_r} .
- 2. En déduire que chaque hyperplan vectoriel H de E possède au moins une matrice inversible. Indication: Rappeler la caractérisation du rang de U à l'aide de R_r et l'utiliser