

MATHEMATIQUES Octobre 2024

Feuille d'Exercices $n^{\circ}4$ Séries Numériques

Exercice 1. Donner un équivalent de $\sum_{k=-1}^{2n} \frac{1}{\sqrt{k}}$

Exercice 2. Soit $u_n = \prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)$. Étudier la convergence de $(u_n)_n$.

Exercice 3. Nature de : (1)
$$\sum_{n\geqslant 0} \ln\left(\frac{n^2+n+1}{n^2+n-1}\right)$$
, (2) $\sum_{n\geqslant 1} \left(\frac{n+3}{2n+1}\right)^{\ln n}$, (3) $\sum_{n\geqslant 1} \frac{n^2}{(n-1)!}$, (4) $\sum_{n\geqslant 2} \left(\left(\cos\frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}}\right)$, (5) $\sum_{n\geqslant 0} \frac{(\ln n)^n}{n!}$,

$$(6) \sum_{n\geqslant 0} \, \frac{3\cdot 6\cdot 9\cdots (3n)}{n^n}$$

1. Convergence et somme de $\sum_{n \ge 2} \frac{1}{n^3 - n}$. Exercice 4.

2. Existence et somme de $\sum_{n=0}^{+\infty} \ln \left(1 - \frac{2}{n(n+1)}\right)$.

3. En vous aidant d'une série exponentielle, montrer l'existence et calculer $\sum_{n=0}^{+\infty} \frac{\cos(\frac{2n\pi}{3})}{n!}$

Exercice 5. Montrer que :

$$\forall x \in \mathbb{R}, \operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

Exercice 6. Donner la CNS sur $(r, \theta) \in \mathbb{R}^2$ pour que $\sum_{n \geq 0} r^n \cos(n \theta)$ et $\sum_{n \geq 0} r^n \sin(n \theta)$ convergent puis dans le cas de convergence, calculer la somme.

Exercice 7. (EIVP) Montrer la convergence et calculer la somme de $\sum_{n > 0} \operatorname{Arctan} \frac{1}{n^2 + 3n + 3}$ sachant que $n^2 + 3n + 3 = 1$ (n+1)(n+2)+1 et en utilisant tan(a-b).

Exercice 8. (CCINP)

- 1. Prouver que, pour tout $n \in \mathbb{N}^*$, l'équation ln(x) = x n a une solution unique dans $[1, +\infty[$ notée x_n .
- 2. Étudier la nature de $(x_n)_n$.
- 3. Étudier la nature de $\sum x_n^{\alpha}$ en fonction de α .

Exercice 9. Pour $n \in \mathbb{N}$, on note $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.

- 1. Justifier l'existence de R_n .
- 2. Montrer $(n+1)!R_n \to 1$ quand n tend vers $+\infty$.
- 3. En déduire la nature de $\sum_{n\geq 0} \sin(n!2\pi e)$.

Exercice 10. (Mines Télécom 2019)

Pour $n \geq 2$, on pose

$$u_n = \prod_{k=2}^n \left(2 - 3^{\frac{1}{k}}\right)$$

1. Montrer que $(u_n)_n$ converge.

2. En considérant $ln(u_n)$, donner la limite de $ln(u_n)$.

3. Montrer qu'il existe $\alpha > 0$, $u_n \underset{n \to +\infty}{\sim} \frac{\alpha}{n^{\ln(3)}}$. (Indication : Considérer $v_n = n^{\ln(3)}u_n$ et $w_n = \ln(v_{n+1}) - \ln(v_n)$)

Exercice 11. 1. Trouver un équivalent de $u_n = \sum_{k=1}^n \frac{\ln k}{k}$.

2. Montrer qu'il existe $C \in \mathbb{R}$ tel que $u_n = \frac{1}{2}(\ln n)^2 + C + o(1)$

3. On rappelle que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1).$

Montrer que $\sum_{k=1}^{2n} (-1)^k \frac{\ln k}{k} = \sum_{k=1}^n \frac{\ln 2}{k} - \sum_{k=n+1}^{2n} \frac{\ln(k)}{k}$.

En déduire la valeur de $\sum_{k=1}^{+\infty} (-1)^k \frac{\ln k}{k}$.

Exercice 12. Nature de (1) $\sum_{n\geqslant 2} \frac{1}{n+(-1)^n\sqrt{n}}$, (2) $\sum_{n\geqslant 1} \frac{(-1)^n \ln n}{n-\ln n}$, (3) $\sum_{n\geqslant 1} \frac{(-1)^n}{n+(-1)^n}$,

Exercice 13. 1. Montrer l'existence de $\int_{n}^{+\infty} \frac{\ln x}{x(1+x)} dx$ pour tout $n \ge 1$.

2. Vérifier que :

$$\int_{n}^{+\infty} \frac{\ln x}{x(1+x)} dx = \int_{n}^{+\infty} \frac{\ln x}{x^{2}} dx - \int_{n}^{+\infty} \frac{\ln x}{x^{2}(1+x)} dx = \frac{\ln(n)}{n} + \frac{1}{n} + O\left(\frac{\ln(n)}{n^{2}}\right)$$

3. En déduire la nature de $\sum_{n\geq 1} (-1)^n n^a \int_n^{+\infty} \frac{\ln x}{x(1+x)} dx$.

Exercice 14. On pose $\forall n \in \mathbb{N}, R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$.

1. Justifier l'existence de R_n .

2. Montrer que $R_n + R_{n+1} = 2R_n - \frac{(-1)^n}{n+2}$ et $R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$.

3. Donner un équivalent de R_n .

4. Nature de $\sum_{n>0} R_n$.

Exercice 15.: (CCINP) Pour $n \in \mathbb{N}^*$, On pose $H(n) = \sum_{k=1}^n \frac{1}{k}$.

Montrer que

$$e\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot n!} = \sum_{n=1}^{+\infty} \frac{H_n}{n!}$$

Exercice 16. 1. Montrer que la série $\sum_{n\geq 0} \frac{(-1)^n}{2n+1}$ converge et donner sa somme.

2. Convergence et somme de la série de terme général $u_n = \frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1}$.

Exercice 17. Montrer que la série $\sum \frac{(-1)^{n+1}}{n^4}$ converge et déterminer une valeur approchée de sa somme à 10^{-3} près.

Exercice 18. Soit $(u_n)_n$ la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 - e^{-u_n}$.

- 1. Montrer que $\forall x \in \mathbb{R}, \ 1 e^{-x} \le x$.
- 2. Montrer que la suite $(u_n)_n$ est bien définie, convergente et déterminer sa limite.
- 3. Déterminer la nature de la série $\sum (-1)^n u_n$

Exercice 19. (CCINP 2018) Montrer que la série de terme général $w_n = \frac{1}{n+1} \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$ converge.

1. Montrer que $\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{1}{t}$. Exercice 20.

- 2. Justifier que $ln(n!) \le n ln(n)$.
- 3. En déduire la nature de la série de terme général $\frac{\sum\limits_{k=1}^{n}\frac{1}{k}}{\ln(n!)}$.

Exercice 21. Montrer que $\left(\frac{(n^2+1)(n!)^2}{(2n)!}\right)$ converge vers 0 — En utilisant la formule de Stirling

- En utilisant la règle de D'Alembert.

Exercice 22. (CCINP) Montrer que la série de terme général $\ln(2n+(-1)^n)-\ln(2n)$ est convergente mais pas absolument.

Exercice 23. (Mines-Ponts)

Pour $n \in \mathbb{N}$, on pose

$$u_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k+1}}$$

Justifier l'existence des u_n et étudier la convergence de $\sum u_n$.