

Déroulement d'une colle :

• Au début de colle, une question de cours sera systématiquement posée : Tout énoncé de proposition ou définition doit être particulièrement PRÉCIS.

Ce sera soit une <u>définition</u>, soit <u>propriété</u> soulignée, ou une <u>formule</u> encadrée dont les hypothèses précises permettant de l'utiliser doivent être connues.

Quelques [preuves] signalées en crochet gras colorié sont exigibles de tous les étudiants.

Quelques [preuves*] signalées en crochet gras colorié sont exigibles des étudiants qui ont une compréhension du cours plus avancée.

Vous passez ensuite aux exercices.

ch. XI: V.A., fonctions génératrices

1) Espérance et Variance

- Notation $X \sim Y$ lorsque X et Y ont même loi.
- Variable aléatoire image Y=f(X) avec $X:\Omega\to\mathbb{R}$ et $f:R\to\mathbb{R}$.
- $\ \underline{ \ \ } \underbrace{ \ \ }_{x \in X(\Omega)} x \mathbb{P}[X = x] \text{, lorsque } (x \mathbb{P}[X = x])$

En pratique, X v.a. discrète admet une espérance lorsque la série numérique $\sum_{n\in\mathbb{N}}x_n\mathbb{P}[X=x_n]$ est ACV, et

$$\mathbb{E}[X] = \sum_{n=0}^{+\infty} x_n \mathbb{P}[X = x_n].$$

- linéarité de l'espérance. Positivité, croissance.
- $-\overline{\text{Si }X\text{ admet une espérance et est à valeurs dans }\mathbb{N},\text{ alors }\mathbb{E}[X]=\sum_{-\infty}^{+\infty}\mathbb{P}[X\geq n]$
- Théorème de <u>Transfert</u> :

$$\mathbb{E}[f(X)] = \sum_{n=0}^{+\infty} f(x_n) \mathbb{P}[X=x_n],$$
 lorsque $f(X)$ admet une espérance

Variance.

En pratique, X v.a. discrète admet une variance lorsque $\mathbb{E}[X^2]$ existe et $\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

$$\mathbb{V}[aX + b] = a^2 \mathbb{V}[X]$$
 [preuve]

2) Fonctions génératrices

- Fonction génératrice d'une v.a. $X: \Omega \to \mathbb{N}$.

$$G_X: t \longmapsto \sum_{k=0}^{+\infty} \mathbf{P}[X=k] \, t^k$$
 ou encore
$$G_X: t \longmapsto \mathbb{E}\left[t^X\right]$$

les étudiants doivent connaître (et savoir calculer) les expressions des (sommes des) fonctions génératrices pour les lois

usuelles
$$b(p)$$
, $B(N,p)$, $P(\lambda)$, $G(p)$ points [preuves]

$$ullet$$
 si $X\sim \mathcal{P}(\lambda)$, alors $G_X:t\mapsto \mathrm{e}^{\lambda(t-1)}$ est définie sur \mathbb{R} , $\mathbb{E}[X]=\mathbb{V}[X]=\lambda$

$$ullet$$
 si $Y\sim \mathcal{G}(p)$, alors $G_Y:t\mapsto rac{pt}{1-(1-p)t}$ est définie sur $[1-1/(1-p),1/(1-p)]$, $\mathbb{E}[Y]=rac{1}{p},\,\mathbb{V}[X]=rac{1-p}{p^2}$

$$ullet$$
 si $S \sim \mathcal{B}(N,p)$, alors $G_S: t \mapsto (1-p+pt)^N$ est définie

$$\operatorname{sur} \mathbb{R}, \quad \mathbb{E}[S] = Np, \quad \mathbb{V}[S] = Np(1-p)$$

- Dans le cas d'une v;a. X à valeurs dans \mathbb{N} , X admet une espérance ssi G_X est dérivable en 1, auquel cas, $\boxed{\mathbb{E}[X] = G_X'(1)}$ (admis, preuve non exigible)
- Dans le cas d'une loi à valeurs dans $\mathbb N$ telle $\mathbb E(X^2)$ existe , alors $\mathbb E[X]=G_X'(1)$ et $\mathbb V[X]=G_X''(1)+G_X'(1)-(G_X'(1))^2$
- Calcul des variances ou espérances des lois usuelles par les séries génératrices : b(p), $\mathcal{B}(N,p)$, $\mathcal{P}(\lambda)$, $\mathcal{G}(p)$. [preuves]
- La fonction génératrice G_X caractérise la loi de $X:\Omega\to\mathbb{N}.$ $\forall n\in\mathbb{N}, \mathbb{P}[X=n]=\frac{G_X^{(k)}(0)}{n!}$

[preuves \star]

- G_X est continue sur [-1,1], comme somme d'une série de fonctions continues qui converge normalement sur [-1,1]. [preuves*]

T.S.V.P. \longrightarrow

ch. XII: E.V.N., limites et continuité

1) Normes

- **Norme** sur un e.v.n.. Espace vectoriel normé $(E, || \cdot ||_E)$.
- Définition (formules) des <u>normes usuelles $\| \|_1, \| \|_2, \| \|_{\infty}$ </u> sur $E = \mathbb{R}^n$.
- Produit scalaire, norme associée à un produit scalaire, sur un espace préhilbertien réel.
- exemple $(M,N) \longmapsto \operatorname{Tr}(M^T N)$ est un produit scalaire sur $E = \mathcal{M}_n(\mathbb{R})$
 - $M \longmapsto \sqrt{\text{Tr}(M^T M)}$ la norme associée.
- Equivalence de normes. En dimension finie, toutes les normes sont équivalentes [ADMIS].
- Distance associée à une norme sur un e.v.n..
- Boule fermée, Boule unité fermée, Boule ouverte.

les étudiants doivent savoir dessiner les boules unités sur \mathbb{R}^2 pour les normes usuelles $\| \|_1, \| \|_2, \| \|_\infty$ [pour tous]

- Partie bornée de $(E, || \cdot||_E)$.
- <u>Suite bornée</u> $(V_n)_{n\geq 0}$ de vecteurs de $(E, || ||_E)$.
- <u>Fonction bornée</u> $f:\Delta\to F$, de Δ partie de $(E,\|\ \|_E)$ vers $(F,\|\ \|_F)$.
- Définition de la limite d'une suite vectorielle, opérations usuelles : (V_n) converge vers L dans E ssi :

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}; \ \forall n \geq n_0, \|V_n - L\|_E \leq \varepsilon$$
 [pour tous]

2) Limites, continuité

N.B. On se limitera à des fonctions de deux (voire trois) variables, à valeurs réelles ou vectorielles, en dimension finie.

- Point adhérent, adhérence [niveau ★]
- <u>Limite d'une fonction</u> en un point adhérent

Critère séquentiel.

- Définition Partie ouverte
- Définition partie fermée. Une parte est fermée ssi son complémentaire est un ouvert.
- continuité d'une fonction de deux variables.

 $f:\mathbb{R}^2 \to \mathbb{R}$ continue en $A \in \mathbb{R}^2$ ssi :

$$\forall \varepsilon > 0, \exists \eta > 0; \forall X \in \mathbb{R}^2, \|X - A\|_E \le \eta \Rightarrow |f(X) - f(A)| \le \varepsilon$$

[pour tous]

- $\overline{\text{continuité d'une fonction } f: E \to F, \text{ avec } E, F \text{ e.v.n.}}$
- Partie fermée
- <u>Théorème des bornes atteintes</u> pour une fonction continue sur un fermé borné: toute fonction continue sur une partie fermée et bornée y est bornée et atteint ses bornes.
- Application lipschitzienne $f: E \to F$ lorsqu'il existe $k \geq 0$ tel que :

$$\forall x, y \in E, ||f(x) - f(y)||_F \le k||x - y||_E$$

- toute application linéaire en dimension finie est lipschitzienne donc continue.
- Continuité d'une application multilinéaire.

3) Topologie

- $-\underbrace{\{(x,y)\in\mathbb{R}^2;f(x,y)>0\}}$ est un ouvert de \mathbb{R}^2 pour f continue.
- $-\{(x,y)\in\mathbb{R}^2; f(x,y)=0\} \ \{(x,y)\in\mathbb{R}^2; f(x,y)\geq 0\}$ sont des fermés de \mathbb{R}^2 pour f continue. **[pour tous]**
- point intérieur, <u>Intérieur Δ° </u> d'une partie Δ de \mathbb{R}^2 [utilisation niveau \star]
- $-\;$ **adhérence** $\overline{\Delta}$ d'une partie Δ de \mathbb{R}^2
- Propriété des ouverts et fermés (stabilité des ouverts par réunion finie ou dénombrable et par intersection finie; stabilité des fermés par intersection finie ou dénombrable et par réunion finie.
 [utilisation niveau *]
- L'image réciproque d'un ouvert par une application continue est un ouvert. [utilisation niveau *]
- L'image réciproque d'un fermé par une application continue est un fermé. [utilisation niveau *]
- Partie convexe dans \mathbb{R}^2 . [utilisation niveau \star]
- Partie dense. [utilisation niveau ⋆]

N.B. pour les interrogateurs/trices : les notions d'indépendances de variables aléatoirse n'ont pas été revues, le chapitre sur les couples ou suites de variables aléatoires et sur les lois conditionnelles sera vu plus tard.

Mathématiques *Du 10/03 au 14/03*

Gwendal T6, Louis (5/2) T6,

Ollie (5/2) T8

Programme de colle n° 20, quinzaine 10

spé PC 2024-2025

Liste (en construction) [préparation avancée ★] : Leïna T1, Erell T3, Arthus (5/2) T4, Manu (5/2) T5,