Cinématique

1. Trajectoire d'un ballon@

On donne les équations horaire du mouvement d'un ballon en coordonnées cartésiennes:

- $x(t) = v_1 \cdot t$ et $y(t) = -c \cdot t^2 + v_2 \cdot t$ v_1, v_2, c , étant des constantes positives
- 1) Établir l'équation de la trajectoire du ballon et la représenter. Quelle type de trajectoire est-ce ?
- 2) Déterminer l'expression de la norme de la vitesse $\|\vec{v}(t)\|$ du ballon à l'instant t?
- 3) Déterminer la date t_1 pour laquelle $\|\vec{v}(t)\|$ est minimale. A quel point de la trajectoire correspond cette vitesse?
- 4) Déterminer la date t_2 pour laquelle $\|\vec{v}(t_2)\| = \|\vec{v}(0)\|$. Calculer $y(t_2)$ et conclure.

<u>Rep</u>: 3) $t_1 = v_2/(2c)$ 4) Rep: $t_2 = 2t_1$

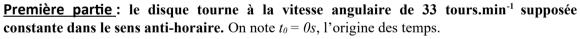
2. Freinage d'urgence ©©

James B (noté B) au volant de sa décapotable suit à une distance D Victor A (noté A) au volant de son 4x4. Les deux véhicules roulent à la même vitesse constante $v_0 = 108 \text{km.h}^{-1}$.

Tout à coup, Victor A commence à freiner avec une décélération constante $a_1 = 6 \text{m.s}^{-2}$; James B réagit et commence à freiner avec un retard de $\tau = 1 \text{s}$ et une décélération constante $a_2 = 5 \text{m.s}^{-2}$.

Quelle condition doit satisfaire D pour que James B s'arrête sans heurter Victor A?

 $\underline{Rep:} D > 45m$


3. Histoire de mouche ©©

Une mouche se trouve à l'extrémité de la trotteuse d'une horloge qui tourne de façon continue. La longueur de la trotteuse est notée r_0 . Elle se dirige vers le centre en restant sur l'aiguille à une vitesse constante $v_0 = 1 cm.s^{-1}$.

- 1) Quel est le mouvement de la mouche dans le référentiel terrestre (lié au sol)? Et dans le référentiel lié à la trotteuse ?
- 2) Quelle est la vitesse angulaire de rotation de la mouche dans le référentiel terrestre ?
- 3) Donner l'expression du vecteur position , du vecteur vitesse et du vecteur accélération de la mouche en coordonnées polaires ?
- 4) Représenter à un instant donné, les vecteurs vitesse et accélération.

4. Etude cinématique d'un tourne-disque ©©

Un tourne-disque, posé sur une table comporte un plateau de centre O, de rayon R = 16 cm. Dans tout le problème, le référentiel d'étude est le référentiel terreste.

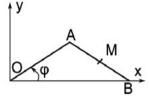
- 1. Quel est le mouvement de tout point M du disque ?
- 2. Calculer la vitesse angulaire ω_0 de rotation du disque en rad.s⁻¹.
- 3. On étudie, grâce à ses coordonnées polaires, le mouvement d'un point M particulier situé à la distance $r = 10 \ cm$ du centre O du disque. Pour cela, on associe au référentiel d'étude le repère d'espace $R(0, \vec{u_x}, \vec{u_y})$ définissant le plan du mouvement.

Faire un schéma dans le plan du mouvement du repère d'espace $R(0, \vec{u_x}, \vec{u_y})$ et du point M sur sa trajectoire en précisant ses coordonnées polaires ainsi que la base polaire associée.

- 4. Établir l'expression de son vecteur position \overrightarrow{OM} puis de son vecteur vitesse \vec{v} dans la base polaire, calculer la norme v de la vitesse.
- 5. Exprimer, puis calculer la distance parcourue par le point M pendant la durée t_1 - t_0 =2 min 30s?
- 6. Établir l'expression de l'accélération \vec{a} du point M dans la base polaire, en fonction de r, ω_{θ} , puis en fonction de r et v. Calculer sa norme à la date t_l .
- 7. Représenter les vecteurs vitesse et accélération sur le schéma de la question 3.

<u>Deuxième partie</u>: à l'instant t_1 , une phase de freinage du plateau débute et celui-ci s'immobilise à l'instant $t_2 = 2 \min 40s$.

- 8. Durant cette phase, la vitesse angulaire ω est donnée par la relation $\omega = a bt$. Déterminer les paramètres de freinage a et b en fonction de ω_0 , t_1 et t_2 . Les calculer en précisant leurs unités.
- 9. Déterminer les expressions du vecteur vitesse et du vecteur accélération du point M dans la base polaire durant la période de freinage, en fonction de t, r, a et b.


5. <u>Jeu de mécano</u>©©

On utilise un jeu de mécano pour construire un dispositif constitué de deux barres identiques OA et AB ,chacune de longueur 2b , articulé en A et assujetties à rester dans le plan $(O, \overrightarrow{u_x}, \overrightarrow{u_y})$. B glisse le long de l'axe Ox et l'angle $\varphi = (\overrightarrow{u_x}, \overrightarrow{OA}) = \omega t$ avec ω constante. Voir figure ci-contre.

- 1) Déterminer l'équation de la trajectoire du milieu M de AB.
- 2) Déterminer la vitesse et l'accélération de M.

Rep:1) $(x/(3b))^2 + (y/b)^2 = 1$; 2) $\vec{a} = -\omega^2 \overline{OM}$

