
Exemple de cours 1: Point de fonctionnement

On considère le circuit ci-contre constitué d'une générateur de fem E=4,5 V et d'une résistance interne $r=1,5\Omega$ et d'un résistor de résistance R=10 Ω , déterminer graphiquement son point de fonctionnement $P(I_0,U_0)$. Retrouver I_0 et U_0 numériquement.

%__

Exemple de cours 2: Influence de la résistance d'entrée sur la tension délivrée par un générateur

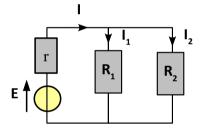
1) Influence sur la tension délivrée par un générateur:

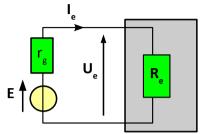
On branche un générateur de fem E et de résistance interne r_g à l'entrée d'un quadripôle de résistance d'entré R_e .

- a) Exprimer la tension U_e délivrée par le générateur en fonction de E, r_g et R_e.
- b) A quelle condition sur R_e , $U_e \approx E$?

2) Application numérique:

L'entrée d'un oscilloscope est décrite par une résistance d'entrée R_e, couramment égale à 1MΩ.


- a) On souhaite mesurer la fem E d'un générateur de résistance interne r_g=50Ω. Pour celà, on connecte le générateur à l'entrée d'un oscilloscope. Quelle erreur relative ε commet-on en confondant la tension à vide E et la tension U_e mesurée à l'écran?
- b) Les capteurs électrochimiques servent à déteminer notamment les concentrations en gaz polluants tels que CO_2 , CO, O_3 dans l'atmosphère. Leur principe est basé sur la fem E mesurée entre une électrode de référence et une électrode de mesure dépendant de la concentration en espèce gazeuse ou dissoute en solution. Un capteur électrochimique a une résistance interne égale à $r_{\rm int}$ =500k Ω , quelle erreur relative de mesure apparait si on connecte directement l'oscilloscope sur le capteur?
- c) On place entre le capteur et l'oscilloscope un adaptateur, qui a pour effet de présenter un résistance d'entrée de $10M\Omega$ au capteur, que devient l'erreur relative précédente?



Exemple de cours 3: Circuit constitué d'un générateur et 2 mailles

Dans le circuit ci-contre, déterminer les intensités I, I₁ et I₂:

- a) Par application directe de la loi des mailles et de la loi des noeuds.
- b) Par application de la loi de Pouillet et la formule du pont diviseur de courant.

