Connaissance de cours Maths

chapitre 10:

-Différente définition des limites :

 $f \ a \ pour \ limite \ l \ en \ x_0: \ \forall \ \epsilon>0 \ , \ \exists \ \delta>0 \ / \ \forall \ x \ \epsilon \ D_f \ , \ |x-x_0| < \delta => |f(x)-l \ | < \epsilon$ $f \ a \ pour \ limite \ +\infty \ en \ x_0: \ \forall \ M>0 \ , \ \exists \ \delta>0 \ / \ \forall \ x \ \epsilon \ D_f \ , \ |x-x_0| < \delta => f(x) > M$ $f \ a \ pour \ limite \ -\infty \ en \ x_0: \ \forall \ M<0 \ , \ \exists \ \delta>0 \ / \ \forall \ x \ \epsilon \ D_f \ , \ |x-x_0| < \delta => |f(x)-l \ | < \epsilon$ $f \ a \ pour \ limite \ l \ en \ +\infty: \ \forall \ E>0 \ , \ \exists \ A>0 \ / \ \forall \ x \ \epsilon \ D_f \ , \ x \ge A \ => |f(x)-l \ | < \epsilon$ $f \ a \ pour \ limite \ +\infty \ en \ +\infty: \ \forall \ M \ \epsilon \ \mathbb{R} \ , \ \exists \ A>0 \ / \ \forall \ x \ \epsilon \ D_f \ , \ x \ge A \ => |f(x)>M$

(les dernières peuvent être un peu modifier afin de définir les limite en $-\infty$)

- soit I un intervalle, $f: I \rightarrow \mathbb{R}$ et $x_0 \in I$ si f admet une limite en x_0 alors $f(x_0) = \lim_{X \rightarrow X_0} f(x)$

-Formes indéterminées :

$$\ll \infty$$
 - ∞ » $\ll \frac{0}{0}$ » $\ll 0 \times \pm \infty$ » $\ll \frac{\pm \infty}{\pm \infty}$ » $\ll 1^{\infty}$ »

-Limites de référence en 0:

$$\lim_{x \to \infty} x \ln(x) = 0 \qquad \lim_{x \to \infty} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to \infty} \frac{\ln(1+x)}{x} = 1 \qquad \lim_{x \to \infty} \frac{e^x - 1}{x} = 1$$

- -Théorème des limites monotones
- -Théorème (caractérisation séquentielle des limites)

Théorème des gendarmes

(Page 6)

-Continuité d'une fonction : soit $x_0 \in I$

• définition : f est continue en x_0 lorsque f admet une limite finie en x_0 (f n'admet pas de « trou »)

$$\forall$$
 $\epsilon > 0$, \exists $\delta > 0$ / \forall $x \in I$, $|x-x_0| < \delta => |f(x) - f(x_0)| \le \epsilon$

- f est continue a gauche en x_0 : si f admet une limite finie en x_0 qui vaut $f(x_0)$
- f est continue a droite en x_0 : si f admet une limite finie en x_0 qui vaut $f(x_0)$

-Si f n'est pas définie en x_0 mais que f est continue a gauche et a droite en x_0 et que ces limites coïncident alors :

• On peut prolonger f par continuité, en posant $f(x_0) = \lim_{x \to x_0} f(x)$

-Si x_0 est une borne de I (par exemples la borne inférieur $[x_0; 1]$): Si $\lim_{x \to x_0^+} f(x)$ existe et est finie (limite a gauche) :

• On prolonge par continuité, en posant $f(x) = \lim_{x \to x} f(x)$

(de façon analogue si x₀ est la borne supérieur de I)

-Méthode pour décider si f est continue en x_0 :

- On étudie les limites a droite et a gauche en x_0 :
- f est continue en x_0 SI:
 - les limites existent et sont finies
 - \circ les limites coïncident ($\lim f(x) = \lim f(x)$
 - $\circ \quad \text{SI} \lim_{x_0^-} f(x) = \lim_{x_0^+} f(x) = f(x_0) \xrightarrow{X_0^-} \xrightarrow{X_0^+} f(x) = \lim_{x_0^+} f(x$

-Théorème des valeurs intermédiaires (TVI):

- soit [a;b] $\subset \mathbb{R}$ et $f \in C^0([a;b]; \mathbb{R})$. $(x \in [a;b])$ \forall k compris entre f(a) et f(b), l'équation f(x)=k admet au moins une solution sur [a;b]
- -Extension aux fonctions complexes (p.11)

Chapitre 11:

- Polynôme nul : \forall k \in [0,n], $a_k = 0$; P=0
- (P≠0) le degré du Polynôme P : le plus grand indice dont le coefficient est non nul
 noté deg(P)
 - $\circ \quad \deg(0) = -\infty$
- Polynôme constant :
 - \circ \forall k \in [1,n], $a_k = 0$
 - ∘ deg(P) ϵ {0; -∞}
 - P ∈ K
- Coefficient dominant de P : coefficient devant le plus grand indice ($a_{deg(P)}$)
- P est unitaire: $a_{deg(P)} = 1$ (coefficient devant le plus grand indice vaux 1)
- P est un monôme : de la forme aX^d (n'a qu'un seul coefficient non nul)
- -Opérations sur les polynômes et sur leur degré : Addition, multiplication par un scalaire, produit, composition(p.2)
- Arithmétique des polynômes :
 - A est multiple de B : $\exists Q \in \mathbb{K}[X] / A = QB$
 - A est divisible par B; B est un diviseur de A : B|A ($deg(B) \le deg(A)$)
 - A et B sont associés : Si A|B et B|A alors $\lambda \in \mathbb{K}^*$ A = λ B

-Savoir faire une division euclidienne de polynômes

- -Connaître la formule de dérivations du polynôme P
- -Formule de Leibniz
- -Formule de Taylor
- -Racine d'un polynôme
 - a est racine de P ssi (X-a)|P
 - Un polynôme de degré n>0 admet, au plus, n racines distinctes
 - Trouver l'ordre de multiplicité de la racine a de P (a est racine n fois si (X-a)ⁿ|P)
 - o n est l'ordre de multiplicité de a si, et seulement si :

$$P(a) = P'(a) = \dots = P^{(n-1)}(a) = 0$$
 et $P^{(n)} \neq 0$

- Somme et produit des racine d'un polynôme (p10-11)
- -Polynôme scindé:
 - Théorème d'Alembert-Gauss : Tout polynôme de C[X] est scindé
 - Polynôme irréductible de $\mathbb{C}[X]$: deg = 1
 - Polynôme irréductibles de $\mathbb{R}[X]$: deg = 1 et deg = 2 avec $\Delta < 0$
- -Savoir décomposer en éléments simples des fonctions rationnelles

Chapitre 12:

-Formule de dérivation :

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\lim_{x \to a} \frac{f(a+h) - f(a)}{h}$$

- -Connaître ses dérivations : des fonctions usuelles, produit, quotient , composition , par un scalaire....
- -Théorème de la limite de la dérivée (p.5)
- -Savoir trouver les extrema d'une fonction
- -Théorème de la bijection (p.8)
- -Théorème de Rolle
- -Théorème des Accroissement finis (TAF)
- -Théorème : Inégalité des Accroissements Finis (IAF) + (fonctions M-lipschitzienne)
- -Les fonctions Convexes : $f[a*(1-\lambda)+\lambda b] \le (1-\lambda)f(a) + \lambda f(b)$
 - C_f est situé sous ses sécantes
 - f'est croissante sur I
 - C_f est situé au-dessus de ses tangentes
 - f" > 0 sur I

-Les fonctions Concaves :
$$f[\ a^*(1-\lambda)+\lambda b] \ge (1-\lambda)f(a) + \lambda f(b)$$

C_f est situé au-dessus de ses sécantes

f' est decroissante sur I

C_f est situé en-dessous de ses tangentes

Chapitre 13:

(-Opérations dans un espace vectoriel)

- -Savoir si F est un Sous-Espace vectoriel de E :
 - Regarder si $\overline{0}_{E}$ est dans F
 - Oui : déterminer si F est stable par CL (si oui alors c'est un SEV)
 - Non : conclure que F n'est pas un SEV de E
- -Sous-espace vectoriel engendré par une famille de vecteurs : (p.6)
- -F est une droite vectorielle de E : F=Vect(u) ; $u\neq 0$
- -F est un plan vectoriel de E : F=Vect(u,v) avec u et v non colinéaires
- -La somme F+G est directe si $u=u_F + u_G$ est unique, pour tout u.
 - \rightarrow Plus facile: montrer que FnG = $\{0\}$
- -F et G sont supplémentaire si F⊕G = E
 - lorsque la somme est directe (mg FnG = {0})
 - et qu'elle vaut l'espace entier : pour tout vecteur \overline{x} \in E prouver que \overline{x} \in F+G
- -Famille libre : unique combinaison linéaire nulle est triviale(évidente)

 $\Sigma \lambda_i ui = 0 \Rightarrow \text{pour tout i, } \lambda_i = 0$

- -Famille liée : cas contraire
- -Famille génératrice (p.11) : elle génère l'espace entier
- -Une famille est une base : elle est libre et génératrice
 - connaître les bases canoniques dans les espaces de référence.
 - soit F une famille de vecteurs de E :
- $^{\circ}~$ F est une base <=> tout v ε E s'écrit de façon unique comme CL des vecteurs de F Méthode (p.12)
- -Base adaptée de F+G (p.13)