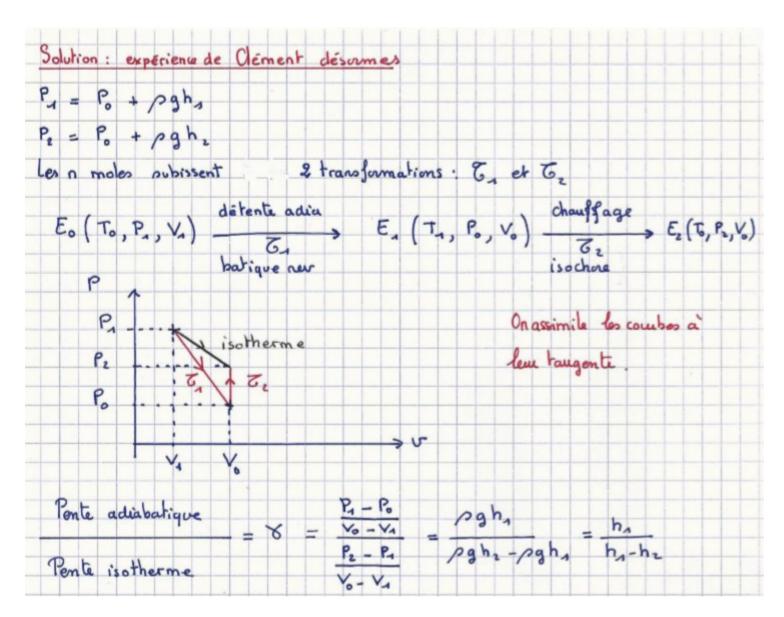

Expérience de Clément-Désormes


On considère un ballon de volume V_0 rempli d'un gaz parfait à un pression P_I légèrement supérieure à la pression atmosphérique P_0 : le liquide manométrique dans le tube en U présente une dénivellation h_I .

On ouvre le robinet pendant une durée brève, la dénivellation du liquide devient nulle. Le robinet fermé, on attend que s'établisse l'équilibre thermique: celui-ci correspond à une nouvelle dénivellation h_2 du liquide correspondant à une pression du gaz P_2 . Montrer que : $\gamma = \frac{h_1}{h_1 - h_2}$

Indications:

- Raisonner sur les n moles restant dans le ballon après la fuite (dans l'état initial, on pourra considérer qu'elles occupent le volume V_1 légèrement inférieur à V_0 . Lors de la fuite, ces n moles subissent une détente rapide qui pourra être considérée comme adiabatique mécaniquement réversible.
- Représenter les 2 transformations subies par les n moles en coordonnées de Clapeyron.

