Devoir Surveillé n°6 PSI

MATHEMATIQUES

Samedi 4 Février 2023

(Durée : 4 heures)

Documents, calculatrice et portables interdits

Niveau CCINP/E3A

Exercice 1

Pour tout entier naturel n non nul, on pose : $I_n = \int_0^{+\infty} \exp(-t^n) dt$.

- **Q1**. Justifier, pour tout $n \in \mathbb{N}^*$, l'existence de I_n .
- **Q2**. En citant le théorème utilisé, déterminer la limite de la suite $(I_n)_{n\in\mathbb{N}^*}$. on pourra utiliser, après l'avoir justifié que $\forall n \in \mathbb{N}^* \forall t \geq 1, t^n \geq t$
- Q3. En le justifiant, effectuer le changement de variable $u = t^n$ dans I_n .
- Q4. Déterminer alors la $\lim_{n\to+\infty} nI_n$.

 On donnera le résultat en fonction d'une intégrale J que l'on ne cherchera pas à calculer.
- **Q5**. En déduire un équivalent de I_n au voisinage de $+\infty$ en fonction de J.
- **Q6**. On considère la série entière $\sum_{n\geq 1} I_n x^n$.
 - 6.1. Déterminer le rayon de R de cette série entière.
 - 6.2. On pose pour tout x réel et lorsque cela est possible $f(x) = \sum_{n=1}^{+\infty} I_n x^n$. Donner l'ensemble de définition de f.

Exercice 2

On admet l'égalité $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

On définit pour tout entier naturel non nul n, $h_n = \sum_{k=1}^n \frac{1}{k}$. On introduit les séries entières :

$$H = \sum_{n \ge 1} h_n x^n$$
, $S = \sum_{n \ge 1} \frac{1}{n^2} x^n$, $T = \sum_{n \ge 1} \frac{h_n}{n} x^n$.

On notera encore H(x), S(x) et T(x) leurs sommes respectives :

$$H(x) = \sum_{n=1}^{+\infty} h_n x^n$$
, $S(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} x^n$, $T(x) = \sum_{n=1}^{+\infty} \frac{h_n}{n} x^n$.

On note I l'intervalle (ouvert) de convergence de la série H.

- **Q1**. Soit *n* un entier naturel non nul. Justifier que $h_{2n} h_n \ge \frac{1}{2}$.
- **Q2**. Démontrer que la suite $(h_n)_{n\in\mathbb{N}^*}$ diverge vers $+\infty$.
- Q3. Déterminer le rayon de convergence de la série H. En déduire I. On pourra remarquer que $|h_n| \leq n$

- $\mathbf{Q4}$. Déterminer les rayons de convergence des séries S et T.
- **Q5**. Quel est le développement en série entière de la fonction $(g: x \mapsto \ln(1-x))$? Préciser son rayon de convergence.
- **Q6**. Justifier que la fonction $(G: x \mapsto \ln(1-x)/(1-x))$ est développable en série entière sur l'intervalle]-1,1[. Etablir une relation entre G et H.

Soit L la primitive de H sur l'intervalle I telle que L(0) = 0.

- **Q7**. Montrer que : $\forall x \in]-1,1[, L(x)=\frac{(g(x))^2}{2}$.
- $\mathbf{Q8}$. Justifier que L est développable en série entière et expliciter son développement en série entière. On énoncera précisément le théorème utilisé.
- **Q9**. En déduire que T S = L.
- **Q10**. Soit $y \in]0,1[$.
 - (a) Justifier que $\int_0^y \frac{\ln(1-u)}{u} du$ est une intégrale convergente et démontrer l'égalité :

$$\int_0^y \frac{\ln(1-u)}{u} du + S(y) = 0$$

On pourra utiliser le développement en série entière de la fonction $(x \mapsto \ln(1-x))$.

(b) Justifier que $\int_0^1 \frac{\ln(1-u)}{u} du$ est une intégrale convergente et démontrer l'égalité :

$$\int_0^1 \frac{\ln(1-u)}{u} du = -\frac{\pi^2}{6}.$$

(c) Justifier que

$$\frac{\pi^2}{6} = S(y) + S(1-y) + \ln(y)\ln(1-y).$$

Q11. Exprimer la valeur de $T(\frac{1}{2})$ en fonction de π . Justifier votre réponse.

Exercice 3

Données et Notations

- Pour $n \in \mathbb{N}^*$, $\mathbf{M}_n(\mathbb{R})$ désigne l'ensemble des matrices carrées de taille n à coefficients réels.
- Dans tout cet exercice, les vecteurs de \mathbb{R}^n seront notés en colonne.
- Soit $n \in \mathbb{N}^*$ un entier naturel fixé. On note A_n la matrice tridiagonale suivante :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ n & 0 & 2 & \ddots & & \vdots \\ 0 & n-1 & 0 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & n \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathbf{M}_{n+1}(\mathbb{R}).$$

Le terme général a_{kl} de la matrice A_n vérifie donc :

- $a_{k,k+1} = k \text{ si } 1 \leqslant k \leqslant n,$
- $-a_{k,k-1} = n k + 2 \text{ si } 2 \leq k \leq n + 1,$
- $a_{kl}=0$ pour tous les couples $(k,l)\in [1,n+1]^2$ non couverts par les formules précédentes.

On admet et on pourra utiliser que A_n est diagonalisable sur \mathbb{R} , que les valeurs propres de A_n sont les entiers de la forme 2k-n pour $k \in [0,n]$ et que :

$$\ker(A_n - nI_{n+1}) = \operatorname{Vect} \begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{pmatrix},$$

où pour tout $k \in [0, n]$, on note $p_k = \binom{n}{k}$.

Étant donné un entier $n \in \mathbb{N}^*$, on dispose de deux urnes U_1 et U_2 contenant à elles deux n boules numérotées de 1 à n. On note N_0 la variable aléatoire égale au nombre de boules initialement contenues dans l'urne U_1 .

À chaque instant entier $k \in \mathbb{N}^*$, on choisit un des n numéros de façon équiprobable puis on change d'urne la boule portant ce numéro. Les choix successifs sont supposés indépendants.

Pour $k \in \mathbb{N}^*$, on note N_k la variable aléatoire égale au nombre de boules dans l'urne U_1 après l'échange effectué à l'instant k.

Exemple : supposons n=4 et qu'à l'instant 0, l'urne U_1 contient les boules numérotées 1, 3, 4 et l'urne $\overline{U_2}$ la boule 2. On a dans ce cas $N_0 = 3$.

- Si le numéro 3 est choisi à l'instant 1, on retire la boule 3 de U_1 et on la place dans U_2 . On a alors $N_1 = 2$.
- Si le numéro 2 est choisi à l'instant 1, on retire la boule 2 de U_2 et on la place dans U_1 . On a alors

Pour $l \in [0, n]$, on note $E_{k,l}$ l'évènement $(N_k = l)$ et $p_{k,l} = \mathbb{P}(E_{k,l})$ sa probabilité. On note enfin $Z_k = \begin{pmatrix} p_{k,0} \\ p_{k,1} \\ \vdots \\ p_k \end{pmatrix} \in \mathbb{R}^{n+1}$ le vecteur qui code la loi de la variable aléatoire N_k .

Q1. Donner la matrice A_2 et vérifier ce qui est annoncé au début de l'exercice, à savoir que : A_2 est diagonalisable sur \mathbb{R} , que les valeurs propres de A_2 sont les entiers de la forme 2k-2 pour $k \in [0,2]$ et que :

$$\ker(A_2 - 2I_3) = \operatorname{Vect} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix},$$

où pour tout $k \in [0, 2]$, on note $p_k = \binom{2}{k}$.

- **Q2**. Pour $n \in \mathbb{N}^*$, Pour $k \in \mathbb{N}$, justifier que la famille $(E_{k,0}, E_{k,1}, \dots, E_{k,n})$ est un système complet d'événements.
- Q3. Si l'urne U_1 contient j boules à l'instant k, combien peut-elle en contenir à l'instant k+1? On traitera séparément les cas j = 0 et j = n.
- **Q4**. Pour $k \in \mathbb{N}$ et $j, l \in [0, n]$, déterminer :

$$\mathbb{P}_{E_{k,l}}(E_{k+1,j}),$$

Q5. Démontrer que pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(E_{k+1,0}) = \frac{1}{n} \mathbb{P}(E_{k,1}) \text{ et } \mathbb{P}(E_{k+1,n}) = \frac{1}{n} \mathbb{P}(E_{k,n-1})$$

et que:

$$\forall j \in [1, n-1], \ \mathbb{P}(E_{k+1,j}) = \frac{n-j+1}{n} \mathbb{P}(E_{k,j-1}) + \frac{j+1}{n} \mathbb{P}(E_{k,j+1}).$$

Q6. En déduire que pour tout $k \in \mathbb{N}$,

$$Z_k = \frac{1}{n^k} A_n^k Z_0,$$

On suppose jusqu'à la fin de l'exercice qu'à l'instant 0, on a disposé de façon équiprobable et indépendamment les unes des autres les n boules dans l'une des urnes U_1 ou U_2 .

- **Q7**. Déterminer la loi π de N_0 .
- **Q8**. Montrer que pour tout $k \in \mathbb{N}$, N_k a la même loi que N_0 .
- **Q9**. Démontrer que π est l'unique loi de probabilité ayant la propriété suivante : si N_0 suit la loi π , alors toutes les variables N_k suivent la loi π .

FIN