

PSI MATHEMATIQUES Septembre 2024

Feuille d'Exercices $n^{\circ}1$ Révisions d'algèbre linéaire

Exercice 1. : Soit $E = \mathbb{R}^3$. Soit \mathscr{B} la base canonique de E et $\mathscr{B}' = (v_1 = (-1, 1, -3); v_2 = (3, 2, 1); v_3 = (2, 1, 1))$.

- 1. Montrer que \mathscr{B}' est une base de E. Écrire la matrice du vecteur (5,1,2) dans \mathscr{B}' .
- 2. Soit f défini par : f(x, y, z) = (2x + z, x 3y, -x + z).
- a) Montrer que $f \in \mathcal{L}(E)$.
- b) Déterminer la matrice de f dans la base \mathscr{B} , puis \mathscr{B}' .
- 3. Déterminer noyau et image de f. Sont-ils supplémentaires dans E?

Exercice 2. : Soit E le sous ensemble des fonctions continues sur $\mathbb R$ à valeurs dans $\mathbb R$ constitué des fonctions f telles que :

$$\exists (a, b, c) \in \mathbb{R}^3, \ \forall x \in \mathbb{R}, \ f(x) = a \cos 2x \cos x + b \sin 2x \sin x + c \cos x$$

- 1. Montrer que E est un sous espace vectoriel de $\mathcal{C}^0(\mathbb{R},\mathbb{R})$.
- 2. La famille (f_1, f_2, f_3) définie pour tout $x \in \mathbb{R}$ par :

$$f_1(x) = \cos 2x \cos x, f_2(x) = \sin 2x \sin x, f_3(x) = \cos x$$

est-elle libre dans E?

3. Montrer que tout élément de E s'écrit pour tout $x \in \mathbb{R}$,

$$f(x) = A\cos x + B\cos 3x$$

où A et B dépendent de f (mais pas de x).

En déduire une base de E.

Exercice 3.:

1. Soit $\mathscr{C} = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} / (u_n)_{n \in \mathbb{N}} \text{ convergente} \}.$

Montrer que l'ensemble des suites constantes et l'ensemble des suites de limite nulle sont des sous-espaces supplémentaires de \mathscr{C} .

- 2. Montrer que l'espace des fonctions paires et l'espace des fonctions impaires sont supplémentaires dans l'espace des fonctions définies sur \mathbb{R} .
- 3. Montrer que l'espace des matrices symétriques et l'espace des matrices antisymétriques sont supplémentaires dans l'espace des matrices d'ordre n.

Exercice 4. : Soit f l'application définie par :

$$\forall P \in \mathbb{R}_3[X], f(P) = P(X) + (X - a)P'(X) + (X - a)^2 P''(X)$$

- 1. Justifier que $((X-a)^k)_{0 \le k \le 3}$ est une base B de $\mathbb{R}_3[X]$. Donner les coordonnées d'un polynôme P dans cette base.
- 2. Justifier que f est un endomorphisme de $\mathbb{R}_3[X]$. Écrire la matrice de f dans B, puis dans la base canonique de $\mathbb{R}_3[X]$.
- 3. Déterminer noyau et image de f.

Exercice 5. Soit Φ l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}^4: P \mapsto (P(0), P'(0), P(-1), P'(-1))$.

- 1. Montrer que Φ est linéaire.
- 2. Déterminer Ker Φ . L'application est-elle bijective?
- 3. Exprimer M, matrice de Φ dans les bases canoniques de $\mathbb{R}_3[X]$ et \mathbb{R}^4 .
- 4. M est-elle inversible? Si oui, donner son inverse.

Exercice 6. : Soit $E = \{f_{a,b} : x \longmapsto (ax+b)e^{2x}, (a,b) \in \mathbb{R}^2\}.$

- 1. Montrer que E est un espace vectoriel de dim finie et trouver une base \mathscr{B} de E.
- 2. Montrer que $\varphi: f \longmapsto f'$ est un endomorphisme de E. Donner sa matrice dans \mathscr{B} .
- 3. En déduire une solution de l'équation différentielle :

$$y^{(3)} - y'' - 2y' - 3y = (-\lambda x + 4)e^{2x}$$

Exercice 7. Soit l'espace vectoriel $T_{s,n}$ des matrices triangulaires supérieures d'ordre n et \mathcal{A}_n celui des matrices antisymétriques.

Soit l'application

$$\varphi: T_{s,n} \longrightarrow \mathcal{A}_n$$

$$A \longmapsto A - {}^t\!A$$

Montrer que φ est une application linéaire surjective. En déduire la dimension de \mathcal{A}_n et celle de l'espace des matrices symétriques.

Exercice 8. : Soit $E = \mathbb{K}[X]$, $\Delta : E \to E$, $P(X) \longmapsto P(X+1) - P(X)$ et $D : E \to E$, $P(X) \longmapsto P'(X)$.

- 1. Justifier que $\Delta \in \mathcal{L}(E)$.
- 2. Déterminer ker(D) puis $ker(\Delta)$.
- 3. Établir que $\forall n \in \mathbb{N}, \Delta(\mathbb{K}_{n+1}[X]) = \mathbb{K}_n[X]$.
- 4. En déduire la surjectivité de Δ .
- 5. En considérant la restriction de Δ à $\mathbb{K}_n[X]$ avec n à choisir, puis la matrice de cette restriction, trouver $P \in E$ de degré minimal tel que $P(X+1) P(X) = X^4$.
- 6. Exprimer Δ en fonction des puissances de D.

Exercice 9. : Soit E le \mathbb{R} -espace vectoriel $\mathcal{C}^0(\mathbb{R},\mathbb{R})$ et $\varphi \in \mathcal{F}(E,E)$, qui à f de E associe g définie par $g(x) = \int_0^x t \, f(t) \, dt$.

Montrer que φ est un endomorphisme de E et déterminer noyau et image.

Pourquoi en déduit-on que E est de dimension infinie?

Exercice 10. Soit $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et

$$\begin{array}{ccc} f: & E & \to & E \\ & f & \mapsto & f' - 2f \end{array}$$

- 1. Montrer que $f \in \mathcal{L}(E)$.
- 2. Déterminer Ker(f). Conséquence?
- 3. Justifier que f est surjective.
- 4. Qu'en déduit-on sur E?

Exercice 11. : Dans \mathbb{R}^3 rapporté à sa base canonique, soit les deux sous espaces vectoriels :

$$\Pi = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + 3z = 0\}, D = \{(x, y, z) \in \mathbb{R}^3 / 2x = 3y = 6z\}$$

Vérifier que Π et D sont supplémentaires dans \mathbb{R}^3 puis déterminer la matrice de projection sur D parallèlement à Π relativement à la base canonique de \mathbb{R}^3 .

Exercice 12. : Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2Id_E = 0$. On pose $p = 2Id_E - f$.

- 1. Vérifier que p est un projecteur.
- 2. Déterminer deux s.e.v F et G de E supplémentaires dans E tels :

$$\forall x \in F, f(x) = x, \text{ et } \forall x \in G, f(x) = 2x$$

3. Déterminer f^n en fonction des puissances de p et de $Id_E - p$.

Exercice 13. Soit f l'application qui, à $P \in \mathbb{R}_6[X]$ associe le reste de la division euclidienne de P par $D(X) = X^4 + X^3 + X^2 + X + 1$.

- 1. Montrer que f est un projecteur de $\mathbb{R}_6[X]$.
- 2. Donner sa matrice dans la base canonique de $\mathbb{R}_6[X]$.
- 3. Donner la dimension et une base de $\operatorname{Im} f$ et $\operatorname{Ker} f$.

Exercice 14. Soit $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et $\Phi : M \mapsto AM$. Φ est-il un automorphisme? un projecteur? une symétrie?

Exercice 15. : On note pour tout entier $n \geq 2$:

$$D_n = \begin{vmatrix} 3 & 1 & 0 & \cdots & \cdots & 0 \\ 2^2 & 5 & 1 & \ddots & 0 & \vdots \\ 0 & 3^2 & 7 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & 2n-1 & 1 \\ 0 & \cdots & \cdots & 0 & n^2 & 2n+1 \end{vmatrix}$$

- a) Exprimer D_n en fonction de n, D_{n-1}, D_{n-2} , pour tout $n \geq 2$.
- b) On note, pour tout $n \geq 2$:

$$u_n = D_n - (n+1)D_{n-1}$$

Montrer que $\forall n \geq 3, u_n = nu_{n-1}$.

En déduire l'expression de D_n en fonction de n et en faisant intervenir un symbole de sommation.