Méthodes à retenir :

- A l'aide du tableau de variations de f_n dérivable sur I, il est aisé de calculer la valeur de $||f_n||_{\infty,I} = \sup\{|f_n(t)|; t \in I\}$.
- Pour démontrer qu'une suite de fonctions $(f_n)_n \in \mathbb{N}$ converge uniformément sur un intervalle I vers une fonction limite f, il suffit de montrer que $\|f_n f\|_{\infty,I} \xrightarrow[n \to +\infty]{} 0$
- Sur un segment [a,b], le théorème d'interversion permet de calculer $\lim_{n\to+\infty}\int_a^b f_n$, lorsque la suite de fonctions continue (f_n) CVU sur [a,b].
- pour nier la CVU, il suffit de trouver une suite convergente (x_n) vers une limite ℓ et telle que $|f_n(x_n) f(\ell)|$ ne tend pas vers 0.
- Sur un segment [a,b], lorsque la suite de fonctions continues (f_n) CVU sur [a,b] vers f, on sait que $f=\lim_{n\to+\infty}f_n$ est continue sur [a,b].
- Pour démontrer qu'une série de fonctions $\sum_{n\geq 0} f_n$ converge normalement sur un intervalle I vers une fonction somme S, il suffit de montrer que la série numérique $\sum_{n\geq 0} \|f_n\|_{\infty,I}$ converge. On a alors convergence normale donc convergence uniforme de la suite des fonctions sommes partielles vers la fonction somme.
- Sur un intervalle I, lorsque la série de fonctions continues $\sum_{n\geq 0} f_n$ converge uniformément (a fortiori si converge normalement), alors la somme $S=\sum_{n=0}^{+\infty} f_n$ est continue sur I.
- Sur un segment [a,b], le théorème d'intégration terme à terme permet de calculer $\sum_{n=0}^{+\infty} \int_a^b f_n$, lorsque la série de fonction converge uniformément, a fortiori lorsqu'elle converge normalement sur [a,b].
- Sur un intervalle quelconque I, pour une suite $(u_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^\mathbb{N}$ de fonctions de classe \mathcal{C}^1 sur I, telle que la série de fonctions $\sum u_n$ CVS sur I, et telle que la série $\sum u'_n$ des dérivées CVU sur I, on peut dériver terme à terme.

I. Applications du cours

Exercice 1

Pour tout $n \in \mathbb{N}^*$, on pose $f_n : \mathbb{R}^+ \to \mathbb{R}$, $t \mapsto \left(1 + \frac{t}{n}\right)^n$. Montrer que la suite $(f_n)_{n \geq 1}$ converge simplement sur \mathbb{R}^+ vers la fonction $t \mapsto \exp(t)$.

Exercice 2 🌣 🌣

Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 1$. Pour tout $n \in \mathbb{N}$, on pose $f_n: \mathbb{R} \to \mathbb{R}$, $x \mapsto 1 - x^n$.

- 1) Notons J=[0,1[. Montrer que (f_n) converge simplement vers f sur J .
- 2) (f_n) converge-t-elle simplement vers f sur [0,1]?
- 3) Montrer que la convergence est uniforme sur K=[1/4,1/2].

Exercice 3

 $\overline{\text{Soit } a > 0}$. Quel est l'ensemble de définition de

$$g: x \longmapsto \sum_{n=0}^{+\infty} (ax)^n$$
?

Exercice 4

Etudier la convergence simple, uniforme et normale de la série des fonctions

$$f_n: x \longmapsto \frac{1}{n^2 + x^2}$$
 avec $n \geqslant 1$ et $x \in \mathbb{R}$

Exercice 5 \Rightarrow interversion lim-int avec CVU Soit $f_n:[0,1]\to\mathbb{R},\ t\mapsto \frac{\sin(nt)}{n^2}.$ Après avoir étudier la convergence uniforme de $(f_n)_n$, montrer que $\lim_{n\to+\infty}\int_0^1 f_n(t)\mathrm{d}t=0$

Suites et séries de fonctions

Maths

PC M. Roger

Exercice 6 $\Rightarrow \Rightarrow$ Interversion $\lim_{n\to+\infty}$ et $\int_{[0,1]}$:

Théorème de convergence dominée

Pour
$$n\in\mathbb{N}$$
, on pose $f_n:\mathbb{R}\to\mathbb{R},\ t\longmapsto \dfrac{(-t)^n}{1+t^2}$

- 1. (a) Justifier que : pour tout $n \in \mathbb{N}$, f_n est continue sur [0,1].
 - (b) Justifier que la fonction $\varphi: \mathbb{R} \to \mathbb{R}^+, \ t \longmapsto \frac{1}{1+t^2} \text{ est continue positive intégrable sur } [0,1], \text{ et domine la suite de fonctions } (f_n)_{n \in \mathbb{N}} \text{ (i.e. pour tout } n \in \mathbb{N}, \text{ on a } : \forall t \in [0,1], \ |f_n(t)| \leq \varphi(t) \text{)}.$
 - (c) Justifier que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1[vers $f:t\mapsto 0.$
- 2. En appliquant le théorème de convergence dominée, en déduire que la suite

$$(u_n)_{n\in\mathbb{N}}=\left(\int_0^1 \frac{(-t)^n}{1+t^2}\mathrm{d}t
ight)_{n\in\mathbb{N}}$$
 tend vers 0 .

Exercice 7 $\Rightarrow \Rightarrow$ Interversion $\sum_{n=0}^{+\infty}$ et $\int_{[0,1]}$:

Théorème d'intégration terme à terme

Pour
$$n \in \mathbb{N}$$
, on pose $v_n :]0,1] \to \mathbb{R}, \ t \longmapsto t^n \ln t$

- 1. (a) Justifier que : pour tout $n \in \mathbb{N}$, v_n est continue sur [0,1].
 - (b) Montrer que pour tout $n \in \mathbb{N}$, v_n est continue intégrable sur]0,1], et que :

$$\int_0^1 |v_n(t)| \mathrm{d}t = \frac{1}{(n+1)^2}.$$

- (c) En déduire que la série numérique $\sum_{n \geq 0} \int_{]0,1]} |v_n| \ {\rm converge}.$
- 2. Justifier que pour tout $t \in [0,1[$, $\frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n$.
- 3. On admet que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$

En appliquant le théorème d'intégration terme à terme, en déduire que : $\int_0^1 \frac{\ln t}{1-t} \mathrm{d}t = \frac{-\pi^2}{6}$

II. Exercices

Exercice 8 ☆ ☆

Pour chaque suite de fonctions dans $C^0(I,\mathbb{R})$, étudier la convergence simple sur I vers une éventuelle fonction limite :

a)
$$I =]-1, 1], \forall n \in \mathbb{N}, f_n : x \mapsto (n-1)x^n;$$

b)
$$I = [0, \pi/2], \forall n \in \mathbb{N}, g_n : x \mapsto (\cos x)^n;$$

c)
$$I = [0, 1], \forall n \in \mathbb{N}, \ h_n : x \mapsto \frac{1}{1 + nx^2};$$

d)
$$I=[0,1]$$
, $\forall n\in\mathbb{N},\ i_n:x\mapsto rac{nx+1}{n^2+n^3x^2}$;

e)
$$I = [-1/2, 1/2], \forall n \in \mathbb{N}, j_n : x \mapsto \sum_{k=n}^{n} x^k.$$

Exercice 9 ☆☆

Pour $n \in \mathbb{N}$ on pose $f_n:]0, +\infty[\to \mathbb{R}, \ x \mapsto \frac{\mathrm{e}^{-nx}}{r}.$

- 1. Soit $n \in \mathbb{N}$ fixé. Etudier les variations de f_n .
- 2. En déduire que pour tout a>0, f_n est bornée $\sup [a,+\infty[\text{ et } \|f_n\|_{\infty,[a,+\infty[}=\frac{\mathrm{e}^{-na}}{a}.$
- 3. Etudier la convergence simple de (f_n) sur $]0,+\infty[$.
- 4. Etudier la convergence uniforme de (f_n) sur $]0,+\infty[$.
- 5. Etudier la convergence uniforme de (f_n) sur $]1, +\infty[$.

Exercice 10 ☆☆

Pour $n \in \mathbb{N}$ on pose $u_n :]0, +\infty[\to \mathbb{R}, \ x \mapsto \frac{\mathrm{e}^{-nx}}{x}.$

- 1. Soit $n \in \mathbb{N}$ fixé. Etudier les variations de u_n .
- 2. En déduire que pour tout a>0, u_n est bornée $\sup [a,+\infty[\text{ et } \|u_n\|_{\infty,[a,+\infty[}=\frac{\mathrm{e}^{-na}}{a}.$
- 3. Quelle est la nature de la série numérique $\sum_{n>0} \frac{e^{-na}}{a} ?$
- 4. Que peut-on en déduire pour la série de fonctions $\sum_{n\geq 0}u_n$?
- 5. En déduire que la fonction $S: x \mapsto \sum_{n=0}^{+\infty} \frac{\mathrm{e}^{-nx}}{x}$ est définie et continue sur $]0, +\infty[$.

Exercice 11 **

Soit I =]0, 1]. Pour tout $n \in \mathbb{N}$, on pose $f_n: I \to \mathbb{R}, \ x \mapsto e^{-nx}$.

Etudier la convergence simple puis la convergence normale sur I de la série de fonctions $\sum f_n$. Même question en restriction à J = [1/2, 1].

Exercice 12 $\Rightarrow \Rightarrow \Rightarrow$ Interversion $\sum_{n=0}^{\infty}$ et $\frac{\mathrm{d}}{\mathrm{d}t}$, calculs de sommes de « séries dérivées »

Pour $n \in \mathbb{N}$, on pose $w_n :]-1,1[\to \mathbb{R}, t \longmapsto t^n$

- 1. (a) Justifier que : pour tout $n \in \mathbb{N}$, w_n est de classe C^1 sur]-1,1[.
 - (b) Justifier que la série de fonctions $\sum_{n\geq 0} w_n$ converge simplement sur]-1,1[vers S: $t \longmapsto \frac{1}{1-t}$.
 - (c) Justifier que la série de fonctions $\sum_{n=0}^{\infty} w_n'$ converge normalement sur tout segment de]-1,1[.
- 2. En appliquant le théorème de dérivation terme à terme, en déduire que S est de classe \mathcal{C}^1 sur]-1,1[et calculer sa dérivée en tout point.
- 3. En déduire $\sum_{n=1}^{+\infty} \frac{n}{2^{n-1}}$.
- 4. En reprenant la méthode à l'ordre 2, calculer $\sum^{+\infty} \frac{n(n-1)}{2^{n-2}}.$

Problème 1 ☆☆ Fonction Dzêta

On considère la fonction ζ de la variable réelle x définie

 $\text{par la relation }\zeta\left(x\right)=\sum^{+\infty}\frac{1}{n^{x}}.$

Pour tout entier $n \in \mathbb{N}^*$, on considère la fonction f_n définie sur $]1; +\infty[$ par : $\forall x \in]1; +\infty[, f_n(x) = \frac{1}{n^x}]$

- 1. Déterminer l'ensemble de définition de la fonction ζ .
- 2. Soit $a \in]1; +\infty[$. Montrer que la fonction ζ est continue sur l'intervalle $[a; +\infty[$.

Que peut-on en déduire pour la continuité de la fonction ζ ?

- 3. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que : $\forall k \in \mathbb{N}^*, \ \forall x \in]1; \ +\infty[$ $f_n^{(k)}(x) = \frac{(-\ln(n))^k}{n^x}.$
 - (b) Montrer que la fonction ζ est de classe \mathcal{C}^{∞} $\sup_{k=0}^{\infty} 1$; $+\infty$ [et donner l'expression de $\zeta^{(k)}(x)$ pour tout $k \in \mathbb{N}^*$ et tout $x \in]1; +\infty[$ sous forme d'une série.
- 4. Préciser le sens de variation de ζ.
- 5. On se propose dans cette question de justifier l'existence et de déterminer la valeur de la limite de la fonction ζ en $+\infty$.
 - (a) Montrer que ζ possède une limite finie en
 - (b) Soit $N \in \mathbb{N}^*$. Montrer que: $\forall x \ge 2, \ 1 \le \zeta(x) \le \sum_{n=1}^{N} \frac{1}{n^x} + \sum_{n=N+1}^{+\infty} \frac{1}{n^2}.$
 - (c) En déduire la valeur de la limite de ζ en $+\infty$.
- 6. On considère à présent $h \in]0; +\infty[$.

A l'aide d'une comparaison série-intégrale, déterminer un encadrement de $\zeta(1+h)$ puis un équivalent de $\zeta(x)$ lorsque x tend vers 1.

- 7. Donner l'allure de la représentation graphique de la fonction ζ .
- 8. On pose : $\forall x \in]0; +\infty[, F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^x}.$
 - (a) Justifier que F est bien définie.
 - (b) Monter que F est continue sur \mathbb{R}_+^* .
 - (c) Montrer que: $\forall x \in]1; +\infty[, \zeta(x) + F(x) = 2^{1-x}\zeta(x).$
 - (d) Déterminer ensuite la limite de F en $+\infty$.

Exercice 13

Déterminer:

$$\lim_{n \to +\infty} \int_{\frac{1}{n}}^{n} \frac{\mathrm{d}x}{x^n + \mathrm{e}^x}$$

Exercice 14

Soit
$$F(x) = \int_0^\infty \frac{e^{-2t}}{x+t} dt$$
.

- 1) Existence de F sur $]0,+\infty[$.
- 2) Calculer la limite en $+\infty$ de xF(x). On pourra calculer la limite de $(nF(n))_{n\in\mathbb{N}^*}$.
 - 3) Donner un équivalent de F(n) quand $n \to +\infty$.

PC M. Roger

Exercice 15 ☆☆☆ Intégrale d'une somme de fonctions

Pour
$$x>0$$
, on pose $f(x)=\sum_{n=1}^{+\infty}\frac{1}{n\sqrt{1+nx}}.$

- 1. Justifier que l'on définit bien une fonction f sur \mathbb{R}_{*}^{+} par l'expression précédente.
- 2. Montrer que f est continue sur $I =]0, +\infty[$. notons qu'il suffit de montrer le résultat sur tout

segment de I

3. Montrer que f est intégrable sur [0,1] et que

$$\int_0^1 f(t)dt = \sum_{n=1}^{+\infty} \frac{2}{n(1+\sqrt{n+1})}$$

4. Montrer que f n'est pas intégrable sur $[1, +\infty]$.

Exercices avancés 111.

Exercice 16 公公

On pose pour $n \in \mathbb{N}$, $u_n = \int_0^{+\infty} \frac{x^n}{1 + x^{n+3}} dx$. Justifier qu'on peut définir la suite $(u_n)_{n\in\mathbb{N}}$ puis que cette suite converge et donner sa limite sous forme intégrale (on ne demande pas le calcul de l'intégrale).

Exercice 17 公公

On pose pour
$$n \in \mathbb{N}, u_n = \int_0^1 \frac{1 + t^n \sin(nt^2)}{1 + t^2} dt$$
.

Justifier que la suite converge et donner sa limite sous forme intégrale; calculer cette intégrale.

Exercice 18 **

Justifier que la suite $(f_n)_{n\geq 1}$ de fonctions définies sur |0,1| par:

$$\forall t \in [0,1], \ \forall n \in \mathbb{N}^*, \ f_n(t) = \left(1 + \frac{t}{n}\right)^n$$

converge simplement sur [0,1] vers une fonction f que l'on précisera.

La suite $\left(\int_0^1 f_n(t) dt\right)$ admet-elle une limite fi-

on pourra utiliser l'inégalité : $\ln(1+u) \le u, \forall u > -1$

Exercice 19 公公

Pour $n \ge 1$, on pose $g_n : t \longmapsto n \exp(-n - t)$.

- 1. La suite (g_n) converge-t-elle simplement sur \mathbb{R}^+ vers une limite q?
- 2. La fonction q est-elle dérivable?
- 3. Pour $n \geq 1$, g_n est-elle dérivable, si oui, donner l'expression de sa dérivée.
- 4. A-t-on pour tout $t \in \mathbb{R}^+, g'(t) = \lim_{t \to \infty} g'_n(t)$?

On pose $u_n(x) = (-1)^{n+1}x^{2n+2}\ln x$ pour x[0,1] et $u_n(0)=0$

- 1. Calculer, pour $x \in]0,1]$, $\sum_{n=0}^{\infty} u_n(x)$
- 2. Montrer que $\sum_{n\geq 0}u_n$ converge uniformément sur
- 3. En déduire l'égalité:

$$\int_0^1 \frac{\ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(2n+1)^2}$$

Exercice 21

- 1) Montrer que la série de fonctions $\sum_{n \ge 1} f_n$, où f_n est définie pour $x \in [0, +\infty[$ par $f_n(x) = \frac{nx}{n^3 + x}$ converge simplement sur \mathbb{R}^+ . On note S sa somme.
- 2) Pour tout $n \geq 1$, calculer $||f_n||_{\infty}$.
- 3) La série $\sum f_n$ converge-t-elle normalement sur \mathbb{R}^+ ?

Normalement sur tout segment de \mathbb{R}^+ ?

4) Montrer que la fonction S est continue sur \mathbb{R}^+ , puis calculer $\lim_{x \to +\infty} S(x)$.

Exercice 22 公

Déterminer l'ensemble de définition de la fonction

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{\operatorname{Arctan}(nx)}{x^2 + n^2}.$$

Exercice 23 ななな

Démontrer que la fonction

 $\psi \ : \ [1,+\infty[\to \ \mathbb{R}, \ x \ \mapsto \ \sum_{n=0}^{+\infty} \frac{(-1)^n}{(1+n)^x} \text{ est d\'efinie et }$

continue sur $I = [1, +\infty[$.

Exercice 24 ☆☆

Pour
$$n \in \mathbb{N}$$
, soit $J_n = \int_{[0,1]} t^n (1-t)^n \mathrm{d}t;$ prouver que $\lim_{n \to +\infty} J_n = 0$;

Exercice 25 소소소

Soit A > 0, et $I = [0, A] \subset \mathbb{R}^+$. Pour tout $n \in \mathbb{N}^*$, on pose $f_n : I \to \mathbb{R}, \ x \mapsto \ln\left(1 + \frac{x}{n}\right)$.

- 1. En utilisant l'inégalité $0 \le \ln(1+u) \le u$ valable sur \mathbb{R}^+ , montrer que $(f_n)_{n\ge 1}$ converge simplement sur I vers la fonction nulle, notée $\tilde{0}$.
- 2. Retrouver ce résultat en majorant $|f_n(x) \tilde{0}(x)|$ à l'aide de l'inégalité des accroissements finis.

Exercice 26 ☆☆☆

Pour $n \in \mathbb{N}^*$, on pose $f_n : x \mapsto \sqrt{n} \sin x (\cos x)^n$.

- 1. Existence et calcul de $\int_0^{\pi/2} f_n(t) \mathrm{d}t$.
- 2. Existence et calcul de $\lim_{n\to+\infty}\int_0^{\pi/2}f_n(t)\mathrm{d}t$.
- 3. La suite (f_n) converge-t-elle uniformément sur $[0,\pi/2]$?

Exercice 27 $\Rightarrow \Rightarrow$ *lemme de Riemann-Lebesgue* Soit h une fonction de classe \mathcal{C}^1 sur un segment $[\alpha, \beta]$ à valeurs dans \mathbb{R} .

On pose, pour tout $m \in \mathbb{N}$, $H_m = \int_{0}^{\beta} h(t)e^{imt} dt$.

Montrer, en utilisant une intégration par parties, que $\lim_{m \to +\infty} H_m = 0$

Exercice 28 ☆ ☆

On dit que la **suite de fonctions** $(f_n)_{n\in\mathbb{N}}$ approche uniformément la fonction f sur [a,b]

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}; \ \forall x \in [a, b], \quad |f_{n_0}(x) - f(x)| < \varepsilon$$

Montrer que la suite (f_n) définie par

$$f_n: [0,1] \to \mathbb{R}, \ x \mapsto \frac{nx+1}{n+nx^2}$$

approche uniformément sur $\left[0,1\right]$ la fonction

$$f:[0,1]\to\mathbb{R},\ x\mapsto\frac{x}{1+x^2}.$$

Exercice 29 ☆☆

Pour $n \ge 1$, on pose $f_n : t \longmapsto \frac{\sin(nt)}{n}$.

- 1. La suite (f_n) converge-t-elle simplement sur $[0,\pi]$ vers une limite f?
- 2. La fonction f est-elle dérivable?
- 3. Pour $n \ge 1$, f_n est-elle dérivable, si oui, donner l'expression de sa dérivée.
- 4. A-t-on pour tout $t \in [0, \pi], f'(t) = \lim_{n \to +\infty} f'_n(t)$?

Pour $n \ge 1$, on pose $g_n : t \longmapsto n \exp(-n - t)$.

- 1. La suite (g_n) converge-t-elle simplement sur \mathbb{R}^+ vers une limite g?
- 2. La fonction g est-elle dérivable?
- 3. Pour $n \ge 1$, g_n est-elle dérivable, si oui, donner l'expression de sa dérivée.
- 4. A-t-on pour tout $t \in \mathbb{R}^+, g'(t) = \lim_{n \to +\infty} g'_n(t)$?

Exercice 31 なかか

Justifier que $f:t o \sum_{n=1}^{+\infty} \frac{\sin(nt)}{n^3}$ est définie et conti-

nue sur \mathbb{R} . Vérifier que f est 2π -périodique et impaire.

- 1. Exprimer $\frac{1}{1+t}$ sous la forme de la somme d'une série numérique géométrique, pour $t\in[0,1[$.
- 2. Démontrer que $\int_0^1 \frac{\ln t}{1+t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2}$

Exercice 33 かかか

 $\overline{\text{Pour } x > 0}$, on pose

$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$$

- 1. Justifier que S est définie et de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$.
- 2. En remarquant que S'(x) est du signe de $-1/x^2$, préciser le sens de variation de S.
- 3. Etablir que:

$$\forall x > 0, S(x+1) + S(x) = 1/x$$

4. Donner un équivalent de S en 0.

5. En remarquant que

$$\frac{S(x) + S(x+1)}{2} \le S(x) \le \frac{S(x) + S(x-1)}{2}$$

donner un équivalent de S en $+\infty$.

Exercice 34 ☆☆☆ Etude d'une somme de fonctions

Pour tout $n \in \mathbb{N}^*$, on pose :

$$f_n: [0, +\infty[\longrightarrow \mathbb{R}, \ x \longmapsto \frac{x^n}{n(x^{2n}+1)}.$$

1. Montrer que la série $\sum_{n\geq 1} f_n$ converge simplement sur

$$\mathcal{D} = [0, 1[\cup]1, +\infty[.$$

On note S la somme de cette série de fonctions.

- 2. Montrer que S est de classe \mathcal{C}^1 sur \mathcal{D} et étudier le signe de S'(x) suivant les valeurs de $x \in \mathcal{D}$.
- 3. Montrer que S admet une limite en 1.
- 4. Montrer que S tend vers 0 en $+\infty$.
- 5. Donner le tableau de variations de S, puis tracer l'allure de la courbe représentative de S.

IV. Exercice corrigé à étudier

Soit
$$f_n:[0,1]\longrightarrow \mathbb{R},\ x\longmapsto \frac{2^nx}{1+2^nnx^2}$$

- 1. Montrer la convergence simple de (f_n) sur [0,1] vers une fonction f que l'on précisera.
- 2. A l'aide d'une suite (x_n) de $[0,1]^{\mathbb{N}}$ convergente vers une limite ℓ et telle que $f_n(x_n)$ ne tende pas vers $f(\ell)$, justifier que (f_n) ne converge pas uniformément sur [0,1] vers f.
- 3. En calculant la limite de $\int_0^1 f_n(t) dt$, retrouver par une autre méthode que (f_n) ne converge pas uniformément sur [0,1] vers f.

Correction:

1. Pour x = 0, $f_n(0) \xrightarrow[n \to +\infty]{} 0$.

Pour
$$x \neq 0$$
, $f_n(x) \underset{n \to +\infty}{\sim} \frac{2^n x}{2^n n x^2} \xrightarrow[n \to +\infty]{} 0$.

Donc (f_n) converge simplement (CVS) sur [0,1] vers la fonction nulle $f=\tilde{0}$.

2. En posant $x_n = \frac{1}{2^n}$, on a pour tout $n \in \mathbb{N}$, $x_n \xrightarrow[n \to +\infty]{} 0 = \ell$, et $f_n(x_n) = \frac{1}{1 + \frac{n}{2^n}} \xrightarrow[n \to +\infty]{} 1$

Mais alors $|f_n(x_n) - f(\ell)|$ ne tend pas vers 0, alors que $0 \le |f_n(x_n) - f(\ell)| \le |f_n(x_n) - f_n(\ell)| + |f_n(\ell) - f(\ell)| \le |f_n(x_n) - f_n(\ell)| + |f_n - f||_{\infty}^{[0,1]}$.

S'il y avait convergence uniforme, $\|f_n - f\|_{\infty}^{[0,1]} \xrightarrow[n \to +\infty]{} 0$ et par continuité de f_n pour n suffisamment grand, $|f_n(x_n) - f_n(\ell)| \xrightarrow[n \to +\infty]{} 0$

Ce qui conduirait à l'impossibilité $0 \le 1 \le 0$

Ainsi (f_n) ne converge pas uniformément sur [0,1] vers $f=\tilde{0}$

3.
$$\int_0^1 f_n(t) dt = \frac{1}{2n} \ln(1 + 2^n n) \sim \frac{\ln 2}{2}.$$

La suite (f_n) est une suite de fonctions continues sur le segment [0,1], si elle convergeait uniformément, on devrat avoir $\lim_n \int_0^1 f_n(t) dt = \int_0^1 f(t) dt = 0$, ce qui est impossible.

On retrouve bien que (f_n) ne converge pas uniformément sur [0,1] vers $f=\tilde{0}$.

Questions sur le corrigé :

- a) rappeler le lien entre convergence simple et convergence uniforme.
- b) Peut-on composer des équivalents?

PC M. Roger

Notes

$$^{1}\operatorname{correction}:\operatorname{DL1}\ln\left(1+\frac{t}{n}\right)=\frac{t}{n}+O(n^{-2})$$

⁴ correction:

¹⁵ correction : on minore $f(x) \geq \frac{1}{\sqrt{1+x}}$ non intégrable en $+\infty$.

²⁰ correction:

 $\textbf{1.} \quad \text{Pour } x \in]0,1[\text{, onreconnaît une série géométrique de raison} \\ -x^2 \in]-1,1[\text{, donc convergente et} \\ \boxed{\sum_{n=0}^{+\infty} u_n(x) = -x^2 \ln x \frac{1}{1+x^2}} \\ -x^2 \ln x \frac{1}{1+x^2} + x^2 \ln x \frac{1}{1+x^2} \\ -x^2 \ln x \frac{1}{1+x^2} + x^2 \ln x \frac{1$

Cette expression est encore valable pour x = 1.

 $\textbf{2.} \quad \bullet \text{ On peut essayer de montrer la convergence normale} : u_n \text{ est dérivable, } u_n'(x) = (-1)^{n+1}[(2n+2)x^{2n+1}\ln x + x^{2n+1}] = (-1)^{n+1}x^{2n+1}((2n+2)\ln x + 1).$

$$((2n+2)\ln x + 1) \ge 0 \iff x \ge e^{-1/(2n+2)}$$

Ainsi u_n' change de signe en $e^{-1/(2n+2)}$, et $\|u_n\|_{\infty,]0,1]}=|u_n(e^{-1/(2n+2)})|=\frac{1}{(2n+2)e}$, mais ce n'est pas le terme général d'une série convergente... La série $\sum u_n$ ne converge pas normalement sur]0,1].

ullet On va étudier la CVU à l'aide de la foncion $R_N=S-S_N: x\mapsto \sum_{n=N+1}^{+\infty}u_n(x).$

On calcule pour $x \in]0,1]$ et $N \in \mathbb{N}$: $R_N(x) = -x^2 \ln x \frac{(-x^2)^{N+1}}{1+x^2} = \frac{(-1)^N x^{2N+4} \ln x}{1+x^2}$.

Ainsi, $|R_N(x)| \le -\ln(x)x^{2N+4}$, car $\ln(x) \le 0$.

 $\text{Donc } R_N \text{ est born\'ee sur }]0,1] \text{ et compte-tenu du calcul fait pour } \|u_n\|_{\infty,]0,1]}, \text{ on a } \|R_N\|_{\infty,]0,1]} \leq \|u_{2N+4}\|_{\infty,]0,1]} = \frac{1}{(2(2N+4)+2)e^{-2n}}$

 $\text{Comme} \lim_{N \to +\infty} \frac{1}{(2(2N+4)+2)e} = 0, \text{par th\'eor\`eme d'encadrement, } \lim_{N \to +\infty} \|R_N\|_{\infty,]0,1]} = 0$

 $\mathsf{Comme}\,R_N(0) = 0, \mathsf{pour}\,\mathsf{tout}\,N, \mathsf{on}\,\mathsf{a}\,\mathsf{donc}\\ \boxed{\lim_{N \to +\infty} \|S - S_N\|_{\infty,[0,1]} = 0} \,. \\ \mathsf{Ainsi}\,\sum_{n \ge 0} u_n\,\mathsf{converge}\,\mathsf{uniform\acute{e}ment}\,\mathsf{sur}\,[0,1].$

3. On applique le théorème d'intégration terme à terme sur le segment [0,1] :

- on a $\forall n \in \mathbb{N}, u_n$ est continue sur [0,1] (limite usuelle en 0).

- La série de fonctions $\sum_{n\geq 1} u_n \text{ CVU sur } [0,1] \text{ vers } S: x \mapsto \left\{ \begin{array}{cc} \frac{-x^2 \ln x}{1+x^2} & \text{ si } x>0 \\ 0 & \text{ si } x=0 \end{array} \right.$

Donc S est continue sur [0,1] , la série numérique $\sum_{n\geq 1}\int_0^1u_n$ converge et

$$\int_0^1 \frac{-x^2 \ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x \, \mathrm{d}x$$

Pour
$$n \ge 1$$
, par IPP, $\int_0^1 u_n = \lim_{\varepsilon \to 0} [\frac{x^{2n+3}}{2n+3} \ln x]_{\varepsilon}^1 - \int_{\varepsilon}^1 \frac{x^{2n+2}}{2n+3} \, \mathrm{d}x = \frac{1}{(2n+3)^2}$

$$\operatorname{Donc} 1 = \int_0^1 - \ln x \mathrm{d}x = \int_0^1 \frac{-(1+x^2) \ln x}{1+x^2} \, \mathrm{d}x = \int_0^1 \frac{-\ln x}{1+x^2} \, \mathrm{d}x + \int_0^1 \frac{-x^2 \ln x}{1+x^2} \, \mathrm{d}x$$

d'où
$$\int_0^1 \frac{-\ln x}{1+x^2} dx = -1 + \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x dx$$

²⁰ correction:

Correction.

1. Pour $x \in]0,1[$, onreconnaît une série géométrique de raison $-x^2 \in]-1,1[$, donc convergente et $\sum_{n=0}^{+\infty} u_n(x) = -x^2 \ln x \frac{1}{1+x^2}$

Cette expression est encore valable pour x = 1.

 $\textbf{2.} \quad \bullet \text{ On peut essayer de montrer la convergence normale}: u_n \text{ est d\'erivable, } u_n'(x) = (-1)^{n+1}[(2n+2)x^{2n+1}\ln x + x^{2n+1}] = (-1)^{n+1}x^{2n+1}((2n+2)\ln x + 1) = (-1)^{n+1}x^{2n+1}((2n+2)\ln x$

$$((2n+2)\ln x + 1) \ge 0 \Longleftrightarrow x \ge e^{-1/(2n+2)}$$

Ainsi u_n' change de signe en $e^{-1/(2n+2)}$, et $\|u_n\|_{\infty,]0,1]} = |u_n(e^{-1/(2n+2)})| = \frac{1}{(2n+2)e}$, mais ce n'est pas le terme général d'une série convergente... La série $\sum u_n$ ne converge pas normalement sur]0,1].

ullet On va étudier la CVU à l'aide de la foncion $R_N=S-S_N: x\mapsto \sum_{n=N+1}^{+\infty}u_n(x).$

On calcule pour $x \in]0,1]$ et $N \in \mathbb{N}$: $R_N(x) = -x^2 \ln x \frac{(-x^2)^{N+1}}{1+x^2} = \frac{(-1)^N x^{2N+4} \ln x}{1+x^2}.$

Ainsi, $|R_N(x)| \le -\ln(x)x^{2N+4}$, car $\ln(x) \le 0$.

Donc R_N est bornée sur]0,1] et compte-tenu du calcul fait pour $\|u_n\|_{\infty,]0,1]$, on a $\|R_N\|_{\infty,]0,1]} \le \|u_{2N+4}\|_{\infty,]0,1]} = \frac{1}{(2(2N+4)+2)e}$

 $\textit{Comme} \lim_{N \to +\infty} \frac{1}{(2(2N+4)+2)e} = \textit{0, par th\'eor\`eme d'encadrement, } \lim_{N \to +\infty} \|R_N\|_{\infty,]0,1]} = 0$

 $\textit{Comme } R_N(0) = \textit{0, pour tout } N \textit{, on a donc} \\ \boxed{\lim_{N \to +\infty} \|S - S_N\|_{\infty,[0,1]} = 0} \\ \textit{Ainsi } \sum_{n \geq 0} u_n \textit{ converge uniformément sur } [0,1].$

- 3. On applique le théorème d'intégration terme à terme sur le segment [0,1] :
 - on a $\forall n \in \mathbb{N}$, u_n est continue sur [0,1] (limite usuelle en 0).

- La série de fonctions
$$\sum_{n\geq 1}u_n$$
 CVU sur $[0,1]$ vers $S:x\mapsto \left\{ egin{array}{cc} \displaystyle \frac{-x^2\ln x}{1+x^2} & si\;x>0 \\ 0 & si\;x=0 \end{array}
ight.$

Donc S est continue sur [0,1], la série numérique $\sum_{n\geq 1}\int_0^1 u_n$ converge et

$$\int_0^1 \frac{-x^2 \ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x \, \mathrm{d}x$$

$$\textit{Pour } n \geq 1 \textit{, par IPP, } \int_0^1 u_n = \lim_{\varepsilon \to 0} [\frac{x^{2n+3}}{2n+3} \ln x]_\varepsilon^1 - \int_\varepsilon^1 \frac{x^{2n+2}}{2n+3} \, \mathrm{d}x = \frac{1}{(2n+3)^2}$$

$$\textit{Donc } 1 = \int_0^1 -\ln x \mathrm{d}x = \int_0^1 \frac{-(1+x^2)\ln x}{1+x^2} \, \mathrm{d}x = \int_0^1 \frac{-\ln x}{1+x^2} \, \mathrm{d}x + \int_0^1 \frac{-x^2\ln x}{1+x^2} \, \mathrm{d}x$$

$$\label{eq:double_discrete_discrete_discrete} \emph{d'où} \int_0^1 \frac{-\ln x}{1+x^2} \, \mathrm{d}x = -1 + \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x \, \mathrm{d}x$$

Suites et séries de fonctions

PC M. Roger

$$\textit{Conclusion}: \boxed{\int_0^1 \frac{\ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(2n+1)^2}}, \textit{compte-tenu du décalage d'indice}.$$

²³ correction : on utilise le CSSA pour la CVU

 26 correction : Par calcul direct de primitive, on a $\int_0^{\pi/2} f_n(t) \mathrm{d}t = \frac{\sqrt{n}}{n+1} \to 0$

Pour tout $t \in [0,\pi/2]$ $f_n(t) \to 0$, donc CVS vers $\tilde{0}$.

$$f_n(\arctan(1/\sqrt{n})) = \left(\frac{n+1}{n}\right)^{-(n+1)/2} \rightarrow e^{-1/2} \neq 0 \text{ pas de CVU!}$$

Notes

¹ correction : DL1
$$\ln\left(1+\frac{t}{n}\right)=\frac{t}{n}+O(n^{-2})$$

Cette expression est encore valable pour x = 1.

 $\textbf{2.} \quad \bullet \text{ On peut essayer de montrer la convergence normale} : u_n \text{ est dérivable, } u_n'(x) = (-1)^{n+1}[(2n+2)x^{2n+1}\ln x + x^{2n+1}] = (-1)^{n+1}x^{2n+1}((2n+2)\ln x + 1).$

$$((2n+2)\ln x + 1) \ge 0 \iff x \ge e^{-1/(2n+2)}$$

Ainsi u_n' change de signe en $e^{-1/(2n+2)}$, et $\|u_n\|_{\infty,]0,1]} = |u_n(e^{-1/(2n+2)})| = \frac{1}{(2n+2)e}$, mais ce n'est pas le terme général d'une série convergente... La série $\sum u_n$ ne converge pas normalement sur]0,1].

ullet On va étudier la CVU à l'aide de la foncion $R_N=S-S_N: x\mapsto \sum_{n=N+1}^{+\infty}u_n(x).$

On calcule pour
$$x \in]0,1]$$
 et $N \in \mathbb{N}$: $R_N(x) = -x^2 \ln x \frac{(-x^2)^{N+1}}{1+x^2} = \frac{(-1)^N x^{2N+4} \ln x}{1+x^2}$

Ainsi,
$$|R_N(x)| \le -\ln(x)x^{2N+4}$$
, $\operatorname{car} \ln(x) \le 0$.

Donc R_N est bornée sur]0,1] et compte-tenu du calcul fait pour $\|u_n\|_{\infty,]0,1]}$, on a $\|R_N\|_{\infty,]0,1]} \leq \|u_{2N+4}\|_{\infty,]0,1]} = \frac{1}{(2(2N+4)+2)e}$

$$\text{Comme} \lim_{N \to +\infty} \frac{1}{(2(2N+4)+2)e} = 0, \text{ par th\'eor\`eme d'encadrement, } \lim_{N \to +\infty} \|R_N\|_{\infty,]0,1]} = 0$$

 $\mathsf{Comme}\,R_N(0) = 0, \mathsf{pour}\,\mathsf{tout}\,N, \mathsf{on}\,\mathsf{a}\,\mathsf{donc}\\ \boxed{\lim_{N \to +\infty} \|S - S_N\|_{\infty,[0,1]} = 0} \,. \\ \mathsf{Ainsi}\,\sum_{n \geq 0} u_n\,\mathsf{converge}\,\mathsf{uniform\acute{e}ment}\,\mathsf{sur}\,[0,1].$

- 3. On applique le théorème d'intégration terme à terme sur le segment [0,1]:
 - on a $\forall n \in \mathbb{N}, u_n$ est continue sur [0,1] (limite usuelle en 0).

- La série de fonctions
$$\sum_{n\geq 1} u_n \text{ CVU sur } [0,1] \text{ vers } S: x \mapsto \left\{ \begin{array}{cc} \frac{-x^2 \ln x}{1+x^2} & \text{ si } x>0 \\ 0 & \text{ si } x=0 \end{array} \right.$$

Donc S est continue sur [0,1] , la série numérique $\sum_{n\geq 1} \int_0^1 u_n$ converge et

$$\int_0^1 \frac{-x^2 \ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x \, \mathrm{d}x$$

$$\operatorname{Pour} n \geq 1, \operatorname{par} \operatorname{IPP}, \int_0^1 u_n = \lim_{\varepsilon \to 0} [\frac{x^{2n+3}}{2n+3} \ln x]_\varepsilon^1 - \int_\varepsilon^1 \frac{x^{2n+2}}{2n+3} \, \mathrm{d}x = \frac{1}{(2n+3)^2}$$

$$\operatorname{Donc} 1 = \int_0^1 - \ln x \mathrm{d}x = \int_0^1 \frac{-(1+x^2) \ln x}{1+x^2} \, \mathrm{d}x = \int_0^1 \frac{-\ln x}{1+x^2} \, \mathrm{d}x + \int_0^1 \frac{-x^2 \ln x}{1+x^2} \, \mathrm{d}x$$

⁴ correction:

¹⁵ correction : on minore $f(x) \ge \frac{1}{\sqrt{1+x}}$ non intégrable en $+\infty$.

²⁰ correction:

Suites et séries de fonctions

PC M. Roger

d'où
$$\int_0^1 \frac{-\ln x}{1+x^2} dx = -1 + \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x dx$$

²⁰ correction:

Correction

 $\textbf{1. Pour } x \in]0,1[\textit{, onreconnaît une série géométrique de raison} - x^2 \in]-1,1[\textit{, donc convergente et } \left| \sum_{n=0}^{+\infty} u_n(x) = -x^2 \ln x \frac{1}{1+x^2} \right| \right| = 0$

Cette expression est encore valable pour x=1.

 $\textbf{2.} \quad \bullet \text{ On peut essayer de montrer la convergence normale} : u_n \text{ est dérivable, } u_n'(x) = (-1)^{n+1}[(2n+2)x^{2n+1}\ln x + x^{2n+1}] = (-1)^{n+1}x^{2n+1}((2n+2)\ln x + 1).$

$$((2n+2)\ln x + 1) \ge 0 \iff x \ge e^{-1/(2n+2)}$$

Ainsi u_n' change de signe en $e^{-1/(2n+2)}$, et $\|u_n\|_{\infty,[0,1]} = |u_n(e^{-1/(2n+2)})| = \frac{1}{(2n+2)e}$, mais ce n'est pas le terme général d'une série convergente... La série $\sum u_n$ ne converge pas normalement sur]0,1].

ullet On va étudier la CVU à l'aide de la foncion $R_N=S-S_N: x\mapsto \sum_{n=N+1}^{+\infty}u_n(x).$

On calcule pour
$$x \in]0,1]$$
 et $N \in \mathbb{N}$: $R_N(x) = -x^2 \ln x \frac{(-x^2)^{N+1}}{1+x^2} = \frac{(-1)^N x^{2N+4} \ln x}{1+x^2}$.

Ainsi,
$$|R_N(x)| \le -\ln(x)x^{2N+4}$$
, car $\ln(x) \le 0$.

Donc R_N est bornée sur]0,1] et compte-tenu du calcul fait pour $\|u_n\|_{\infty,]0,1]}$, on a $\|R_N\|_{\infty,]0,1]} \le \|u_{2N+4}\|_{\infty,]0,1]} = \frac{1}{(2(2N+4)+2)e}$

$$\textit{Comme} \lim_{N \to +\infty} \frac{1}{(2(2N+4)+2)e} = 0 \text{, par th\'eor\`eme d'encadrement, } \lim_{N \to +\infty} \|R_N\|_{\infty,]0,1]} = 0$$

$$\textit{Comme } R_N(0) = 0 \textit{, pour tout } N \textit{, on a donc} \\ \boxed{\lim_{N \to +\infty} \|S - S_N\|_{\infty,[0,1]} = 0} \\ \textit{Ainsi } \sum_{n \geq 0} u_n \textit{ converge uniformément sur } [0,1].$$

- 3. On applique le théorème d'intégration terme à terme sur le segment [0,1] :
 - on a $\forall n \in \mathbb{N}$, u_n est continue sur [0,1] (limite usuelle en 0).

- La série de fonctions
$$\sum_{n\geq 1} u_n$$
 CVU sur $[0,1]$ vers $S: x\mapsto \left\{ \begin{array}{ll} \displaystyle \frac{-x^2\ln x}{1+x^2} & si \ x>0 \\ 0 & si \ x=0 \end{array} \right.$

Donc S est continue sur [0,1], la série numérique $\sum_{n\geq 1}\int_0^1u_n$ converge et

$$\int_0^1 \frac{-x^2 \ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x \, \mathrm{d}x$$

Pour
$$n \geq 1$$
, par IPP, $\int_0^1 u_n = \lim_{\varepsilon \to 0} [\frac{x^{2n+3}}{2n+3} \ln x]_{\varepsilon}^1 - \int_{\varepsilon}^1 \frac{x^{2n+2}}{2n+3} \, \mathrm{d}x = \frac{1}{(2n+3)^2}$

Donc
$$1 = \int_0^1 -\ln x dx = \int_0^1 \frac{-(1+x^2)\ln x}{1+x^2} dx = \int_0^1 \frac{-\ln x}{1+x^2} dx + \int_0^1 \frac{-x^2\ln x}{1+x^2} dx$$

$$d'où \int_0^1 \frac{-\ln x}{1+x^2} \, \mathrm{d}x = -1 + \sum_{n=1}^{+\infty} \int_0^1 (-1)^{n+1} x^{2n+2} \ln x \, \mathrm{d}x$$

$$\textit{Conclusion:} \boxed{\int_0^1 \frac{\ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(2n+1)^2}}, \textit{compte-tenu du décalage d'indice.}$$

26
 correction : Par calcul direct de primitive, on a $\int_0^{\pi/2} f_n(t) \mathrm{d}t = \frac{\sqrt{n}}{n+1} \to 0$

Pour tout $t \in [0,\pi/2]$ $f_n(t) \to 0$, donc CVS vers $\tilde{0}$.

$$f_n(\arctan(1/\sqrt{n})) = \left(\frac{n+1}{n}\right)^{-(n+1)/2} \rightarrow e^{-1/2} \neq 0 \text{ pas de CVU!}$$

²³ correction : on utilise le CSSA pour la CVU