

Méthodes à retenir :

- $\ G_X: t \longmapsto \mathbb{E}[t^X] = \sum_{n=0}^{+\infty} \mathbf{P}[X=n] \ t^n \ \text{est définie sur } [-1,1] \ \text{au moins.}$
- Si le rayon de convergence de la série génératrice G_X de X variable aléatoire est R>1, alors X admet des moments à tout ordre k, et $\mathbb{E}[X]=G_X'(1), \mathbb{E}[X(X-1)]=G_X''(1), \mathbb{E}[X(X-1)(\dots)(X-k+1)]=G_X^{(k)}(1)$,

I. Applications directes du cours

Exercice 1

Un joueur dans un casino joue sur une machine qui renvoie un entier N dans \mathbb{N}^* selon la probabilité $\mathbb{P}(N=n)=\frac{1}{2^n}$. Si n est pair le joueur gagne n jetons et si n est impair, le joueur perd n jetons.

- 1. Calculez la probabilité de gagner à ce jeu.
- 2. Soit G le gain algébrique du joueur (G < 0 si le joueur perd), donnez la loi de G.
- 3. espérance de G?

Exercice 2

Soit
$$f: \mathbb{N} \to \{0, 1\}$$
 définie par $f(n) = \begin{cases} 1 & \text{si } n \text{ pair} \\ 1 & \text{si } n \text{ impair} \end{cases}$

Soit $X \sim \mathcal{G}(p)$ pour $p \in]0,1[$ et Y = f(X).

Déterminer l'image $Y(\Omega)$ et calculer les $\mathbb{P}(\{Y=k\})$ pour $k\in Y(\Omega)$

Exercice 3

$$\overline{\text{Soit}\, f:\mathbb{N}\to \{0,1\}}\, \text{d\'efinie}\, \text{par}\, f(n) = \left\{ \begin{array}{ll} 1 & \text{si}\,\, n\,\, \text{pair} \\ 1 & \text{si}\,\, n\,\, \text{impair} \end{array} \right.$$

Soit $X \sim \mathcal{P}(\lambda)$ pour $\lambda > 0$ et Y = f(X).

Déterminer l'image $Y(\Omega)$ et calculer les $\mathbb{P}(\{Y=k\})$ pour $k \in Y(\Omega)$

Exercice 4 ☆☆

Déterminer la valeur de a>0 pour que l'on puisse définir une variable aléatoire discrète X à valeurs dans \mathbb{N}^* en posant :

$$\forall n \in \mathbb{N}^*, \ \mathbf{P}[X=n] = \frac{a}{n(n+1)}$$

Exercice 5

A partir la fonction génératrice d'une variable X suivant la loi de Poisson $\mathcal{P}(\lambda)$, déterminer E(X), $E(X^2)$, et V(X).

II. Exercices

Exercice 6

公公

Soit X une variable aléatoire suivant une loi géométrique de paramètre $p \in \]0,1[$.

Calculer $\mathbb{E}[X(X-1)\dots(X-r+1)]$

III. Exercices avancés

Exercice 7 $\Rightarrow \Rightarrow$ Mines-Télécom

On considère $S(t) = \sum_{n \geq 0} \frac{n^2 + n + 1}{n!} \, t^n$

- 1. Donner le rayon de convergence ${\cal R}$ de cette série.
- 2. Calculer S(t) sur]-R,R[.

On se donne une variable aléatoire X telle que, $\forall t \in [-1,1], G_X(t) = \lambda S(t)$ avec $\lambda \in \mathbb{R}$.

- 3. Que vaut λ ?
- 4. Calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

On considère des lancers successifs d'une pièce ayant une probabilité p d'obtenir face et q=1-p d'obtenir pile.

On se place dans un espace probabilisé (Ω,A,P) pour lequel F_n est un événement, où F_n : "on obtient face au n-ième lancer".

On note par ailleurs P_n : "on obtient pile au n-ième lancer" et E_n : "on obtient une suite de r faces consécutifs pour la première fois au n-ième lancer".

- 1. Exprimer E_0, \dots, E_{r-1} puis E_r en fonction des F_k .
- 2. Montrer que $\forall n \in \mathbb{N}$ on a : $E_{n+r+1} = \left(\bigcap_{j=n+2}^{n+r+1} F_j\right) \cap P_{n+1} \cap \left(\bigcap_{j=1}^{n} \overline{E_j}\right)$ en convenant $\bigcap_{j=1}^{n} \overline{E_j} = \Omega$.
- 3. Montrer que E_n est un événement. On note alors $p_n = P(E_n)$
- 4. Écrire une fonction en python simulant l'expérience et renvoyant le temps d'attente de la première suite de r faces consécutifs.
 - 5. a) Montrer que $\sum p_n$ converge. b) Montrer que

$$\forall n \in \mathbb{N}, p_{n+r+1} = p^r q \left(1 - \sum_{k=1}^n p_k\right)$$

- 6. Exprimer p_{n+r+1} en fonction de p_{n+r}, p, q, p_n
- 7. Montrer que $G(x) = \sum_{n=0}^{\infty} p_n x^n$ est définie et conti-

nue sur [-1;1]

8. Démontrer alors qu'on a :

$$\forall x \in [-1; 1], \frac{G(x)}{1-x} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} p_k\right) x^n$$

9. Exprimer enfin G(x) à l'aide de la question 5.b).

Notes

² correction :

⁶ correction :

$$E[X(X-1)...(X-r+1)] = \sum_{k=r}^{+\infty} \frac{k!}{(k-r)!} p(1-p)^{k-1}$$

$$\operatorname{Or} \sum_{k=r}^{+\infty} \frac{k!}{(k-r)!} x^{k-r} = \frac{d^r}{dx^r} ((1-x)^{-r}) = \frac{r!}{(1-x)^{r+1}}$$

Donc
$$E[X(X-1)\dots(X-r+1)]=rac{(1-p)^{r-1}\,r!}{p^r}$$

$$G_X(t) = \frac{pt}{1 - (1 - p)t}$$

$$G_X^{(r)}(t) = E[X(X-1)\dots(X-r+1)t^X]$$

$$G_X^{(r)}(1) = E[X(X-1)\dots(X-r+1)]$$